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For many real-time signal processing applications, fast and numerically sta-

ble algorithms for solving least-squares problems are necessary and important.

In particular, under non-stationary conditions, these algorithms must be able

to adapt themselves to reflect the changes in the system and take appropri-

ate adjustments to achieve optimum performances. Among existing algorithms,

the QR-decomposition (QRD)-based rccursive least-squares (RLS) methods have

been shown to be useful and effective for adaptive signal processing in modern

communications, radar, and sonar systems.

In order to increase the speed of processing and achieve high throughput rate,

many algorithms are being vectorized and/or pipelined to facilitate high degrees

of parallelism. A time-recursive formulation of RLS filtering employing block

QRD will be considered first. Several methods including a new non-continuous
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windowing scheme based on selectively rejecting contaminated data have been

investigated for adaptive processing.

Based on systolic triarrays initiated by Gentleman/Kung and McWhirter,

many other forms of systolic arrays are shown to be capable of implementing

different algorithms. Various updating and downdating systolic algorithms and

architectures for RLS filtering are examined and compared in details, which in-

clude Householder reflector, Gram-Schmidt procedure, and Givens rotation. A

unified approach encompassing existing square-root-free algorithms is also pro-

posed.

For the sinusoidal spectrum estimation problem, a judicious method of sepa-

rating the noise from the signal is of great interest. Various truncated QR meth-

ods are proposed for this purpose and compared to the truncated SVD method.

Computer simulations provided for detailed comparisons show the effectiveness

of these methods.

This thesis deals with fundamental issues of numerical stability, computational

efficiency, adaptivity, and VLSI implementation for the RLS filtering problems.

[n all. various new and modified algorithms and architectures are proposed and

analyzed; the significance of any of the new method depends crucially on specific

application.
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Chapter 1

Introduction

For many reM-time signal processing applications, such as system identification,

channel equalization, adaptive antenna arrays, spectrum estimation, etc., fast and

numerically stable algorithms for solving least-squares problems are necessarv and

important. In particular, under non-stationary conditions, these algorithms must

be able to adapt themselves to reflect the changes in the system and take appro-

priate adjustments to achieve the best performance. Among existing algorithms.

the QR-decomposition (QRD)-based ree u rsive lcast-squares (RLS) methods have

been proven to be very useful and effective towards adaptive signal processing in

modern communications, radar, and sonar systems [7, 9, 15, 16, 22, 23, 25. 27,

28, 31, 30, 36, 37, 38, 39, 40, 41, 42, 4:3, 48, 47.51, 54, 53, 55, 56, 57, 61, 65, 64].

A time-recursive formulation of RLS filtering employing block QRD will be

given first. To facilitate nonstationary adaptive processing, exponentially grow-

ing, fixed-size sliding, and a new non-continuous windowing scheme based on

selectively rejecting contaminated equations are introduced and compared.

Various updating and downdating algorithms for RLS filtering are examined



and compared, which include Householder reflector, Gram-Schmidt procedure,

and Givens rotation. When the block size of data is reduced to one, these al-

gorithms reduce to existing scalar-type processing methods. A unified approach

encompassing existing square-root-free algorithms is proposed.

Systolic arrays promise to be some of the most suitable VLSI architectures

for implementing real-time adaptive signal processing algorithms. Based on sys-

tolic triarrays initiated by Gentleman/Kung [19] and McWhirter [41], many other

forms of systolic arrays are shown to be capable of implementing different algo-

rithms.

For some applications, like sinusoidal spectrum estimation, a judicious method

of separating the noise from the signal is always of great interest. This involves

rank determination and truncation in the linear system modeling of the problem.

Some QR-based methods are proposed for this purpose and compared to other

truncation methods. Computer simulations are provided for detailed compar-

isons.

In this thesis, numerical stability, computational efficiency, suitability for

VLSI implementation, and adaptivity are the major considerations for the RLS

filtering problems. In all, different methods are provided and analyzed whereupon

the choice rests on the application itself.

This thesis will focus on efficient and suitable VLSI algorithms for RLS filter-

ing with applications to real-time signal processing problems. Attention will be

focused on recursive vectorized block data processing VLSI structure, which gener-

alizes current scalar-type processing structures and possibly reduces the I/O cost.

For many architectures, computational speed is much faster compared to data

movement; this is the reason why many algorithms are being reformulated into



Table 1.1: Summary of notations.

Symbol
n

p
k

Xi

Yi

Q(n)
O (n)
w(n)
e(n)

en

v(n)

A

A

Z

C_ 8

5,_

kl, k:

#,V

Notation

time index

order of L$ filtering (no. of columns/sensors)
block size

i-th snapshot of matrix data block

i-th snapshot of desired (R.H.S.) data block

orthogonal range space of X(n)

orthogonal null space of X(n)

opt. weight vector E 7_P at time n

opt. overall residual vectors, X(n)w(n) - y(n) E _,,k, till time n

opt. residual vector, X,_w(n) - y,_ E _k, at time n

triangular matrix E 7_p×p obtained from QRD of X(n)

projection of y(n) onto Q(n)

residual vector by projecting y(n) onto Qi(n)

fixed-window size (no. of blocks)

block forgetting factor

block row-weighting matrix

previously triangularized matrix with appended new data block

cosine and sine values of the planar rotation angle

hyper-cosine and sine values of the hyperbolic rotation angle

normalization factors of row data for sqrt-free algorithms

parameters of different sqrt-free algorithms

vectorized algorithms. Block processing also offers the advantages of reducing

arithmetical operations and possibly minimizing the round-off errors occurring in

the intermediate stage because of the enlarged wordlength in the internal regis-

ters. Table 1.1 provides a list of major symbols and notations used in this thesis.

Finally, future work and a summary of previous and new results will be given.



Chapter 2

Mathematical Formulation of

Time Recursive Least-Squares

Filtering Problems

For many signal processing applications, time recursive updating forms an im-

portant and natural approach to tackle such problems. Consider the adaptive

antenna array as shown in Fig. 2.1 [25, 16]. :\t each time snapshot, a k x p-

dimensional data X is collected by the auxiliary antennas while the main an-

tenna receives the data y. Our goal is to find a set of weighting coefficients

wj, j = 1,.-.,p, and possibly its associated residual, such that the Euclidean

norm of the overall residual up to time n, x/_i_=x ]]X;. w -- yiH 2 is minimized. If

k = 1, Gentleman and Kung [19] in 1981 proposed a systolic array to update the

optimum weight w(n) as time n advances, by successively updating the upper-

triangular matrix of the QR decomposition of the augmented matrix of X(n)

and y(n). McWhirter [41] in 1983 extended this structure by computing the

4



most recent scalar residual at each time snapshot without explicitly computing

the optimum weight vector w(n) which entails back substitution.

2.1 Time-Recursive Block QR Algorithms for

LS Problems

In this section, recurrence formula to update the optimum weighting and residual

vectors in a block manner as a function of time are derived. Consider a time-

recursive least-squares (LS) problem:

X(n)w(n) _. y(n), (2.1)

where X(n) and y(n) have growing dimensions in the number of data blocks in

rows (growing-window),

X1

=

X.

with .\'i E TC_xc i = 1,2,..-

[Yl• 7"¢"kxp , y(n) = : • _"_, (2.2)

Y,,

, n and Yi E 7P_k, i = 1,2,..., n. Here we denote

k and n as the block size and the time index respectively, and p is the order of

the LS problem. Capitalized letters (e.g., X) are used to denote matrices; small

letters in boldface (e.g., y) vectors, and small letters (e.g., tvi) scalars. A time

index n is represented in the parenthesis, e.g., X(n), to denote all of the time

span until n, or in the subscript, e.g., Xi, the time epoch n only. For simplicity

of notations, we also choose our data as real-valued. It is very easy to extend

to the complex-valued cases. The previously considered scalared cases in [19, 41]

then have k = 1.

5
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The LS solution w(n) E 7?.v is computed such that the Euclidean norm of the

residual vector

el(n)

= x(n)w(,_)- y(n) E _"_ (2.3)

_.(n)

is minimized. All the norms [[. 1[ of vectors or matrices mentioned are 2-norm,

unless otherwise specified. Our interest is to find the recurrence formula for w(n)

and e(n) as n increases.

Suppose the QR decomposition of the augmented matrix [ X(n) y(n) ] is

known at time n,

JR(.) u(.) ]
IX(n) y(n)] = [Q(n) Q±(n)] , (2.4)

0 v(n)

where Q(n) E R- "kxp and Q±(n) E T_ _kx('k-v) represent the orthogonal range and

null spaces of the data matrix X(n), and u(n) E T_v is the projection of y(n) onto

Q(n), v(n) E 7Z ,'k-p is its counterpart projected onto Q±(n), and R(n) E _P×P

is an upper-triangular matrix and assun_ed to be full-rank. R(n) is sometimes

called the Cholesky factor of the covariance matrix of X(n) in that the Cholesky

factorization of XV(n)X(n) can be uniquely expressed as RT(n)l:l(n) subject to

the signs in each rows of R(n) as long as X(n) has full column rank.

Because an orthogonal transformation preserves the Euclidean norms of of a

(2.5)

(2.6)

vector, it can be shown that[35]

Ile(_)ll = IIX(,_)w(,,)-y(n)II

R(n)
= [Q(,_) QJ-(.)]

0

7



II n(_)w(,_) - u(n)= [Q(_) Q_(')] -v(n)

= IIQ(n)[R(n)w(n) - u(n)]ll + II- Q'(n)v(_)ll

"- II- QX(n)v(n)ll

(2.7)

(2.8)

(2.9)

as long as

R(-)w(,0 = u(_). (2.10)

(2.8) follows from the fact that the Euclidean norm of the sum of two or more

orthogonal vectors is equal to the sum of Euclidean norms of these vectors. (2.9)

means that the residual vector while estimating y(n) from X(n) must lie in the

null space of X(n) which corresponds well with the geometrical interpretation of

the orthogonal principle of LS problems.

As the time index n advances by one, i.e., a new data block of size k,

[ X,,+l Yn+l ], is acquired, we can write the recurrence formula for QRD as

follows:

[ X(n + 1)Y(n+l)]=[ X(n)xn+l Y,_+lY(n)] (2.11)

R(,,)

I °
X,_+ 1

Qn+l

Qn+l

u(,_)

v(n)

Yn+,

.1.
Qn+l

[,_k-p

^.1.
n4-1

1R(_+ I)

0

0

u(n + 1)

v(,_)

Vn+l

(2.12)

(2.13)



Q(n)Q_+I

^.1_
Qn+l

R(n+ 1)

] °
0

u(n+ 1)

_(_)

Vn+ 1

(2.14)

[Q(n+ 1) QZ(n+ 1) ]
R(,_ + 1) u(n + 1)

0 v(n + 1)
(2.15)

By defining

(_(n + 1) -
Qn+l J"Qn+l

Qnq-I ^.LQn+I

E 77.(_k)×(p+k), (2.16)

we note that (_(n + 1) constitutes an orthogonal transformation to annihilate the

newly appended data block -¥,_+1, and Q,_+l E 7_vxp and (_.+1 E _k×p represent

the operation of modifying the range space while Qr,+la"E 7_ px_, and Q,_+x^aE _kxk

that of the null space. We use a hat ^ to denote the new dimensional growth due

to the appended data. To sum up, we have the following recurrence formula:

Q(n+l) = [Q(n)Q_'+l1E_('_+I)k×P'Q,_+I^ (2.17)

[ l]Ql(n + 1) = Q.(_,) Q(,,)Q.,+_ E 7_(_+nk × I,+l)k-p , (')..18)
0 ^_

Qn..I-I

E , (2.19)

Vn-F1

JR(n+ I) u(n+ I) _ =

"1

J0 Vn+ 1

Q(n + 1) R(n) u(n) ]

Xn+l Yn+l 1

On4-1 ^.1. rQn+l Xn+ 1

u(n)y,,+x].(2.20)



The desired optimum weighting vector w(n + 1) and the residual vector e(n+ 1)

are thus given by

R(n + 1)w(n + 1)- u(n + 1), (2.21)

which can be solved by back substitution, and

e(n + 1) = -Q±(n + 1)v,,+, (see (2.9)) (2.22)

= _IQ_-(n) Q(n)Q_+ 1 v(n)]
Qn+l Vn+lL 0 ^±

(2.23)

-Ql(n)v(n) - Q(n)Q_,+, v,+,
(2.24)

^.l.
-Qn+lVn+l

e(n) - Q(n)Q_+ lv.+l ] E n ("+l)k. (2.25)
^.L J--Q,_+1v.+ 1

To see the changes of residuals in each previous data blocks due to a new

observation of X,,+I and Y,,+1, we can write down the following lemma.

Lemma 1

e(n -+- 1):

(updating residual)

el(n + 1)

e2(n + 1)

e.(n + 1)

e,+l(n + 1)

el(n) (0,Q2 .t..... Q,_Q,+,v,_+,

e_(,_) O_Q3 _-.... Q,,Q.+lV.+l

e.(n) ^ ±- Q,,Q,,+I v,,+l

^.1.
--Qn+IVa+I

E T_('+l)k

(2.26)

Proof.(2.26) can be derived f_'om (2.1"7) and by noting that Q(1) = QI, i.e.,

Q(2) I"O,Q: ]
L

10



Q(3)

_21Q2Q3

= ¢ Q3

¢3

Q1Q2...Q,

C22Q3. . . Q,_
Q(n) = (2.27)

and substituting Q(n) back into (2.25). •

(2.26) explains that the overall residual vector at time n + 1 comprises of two

^.k
parts: one of them is equal to --Q,,+lvn+l, the new dimensional growth due to

X,,+I, while the other one is equal to the old residual vector at the previous time

n, e(n), offset by Q(n)Q_+lv.+x. Therefore, if we are only interested in R(n + 1)

and/or en+l, then we can simply maintain the information of R(n) and u(n),

which is usually the case for many applications such as beamforming[41. 611.

However, if we need to monitor all of those previously block residual vectors

ei, i = 1, - • •. n, then the previously computed range space Q(n) is still required to

update those old residual vectors. This monitoring may aid in the determination

of some spurious observations(rows) such that they can be deleted (downdated)

from the LS estimation problem and mitigate the possible bias caused by them.

For linear regression [18, 35], this diagnosis in monitoring all the residuals is

especially very important. Our method, following the approach first proposed

by McWhirter [41], provides a one-pass direct way of keeping track of all of

the residuals, without explicitly computing w(n) followed by X(n)w(n) - y(n)

which requires two-passes (involving the use of back substitution twice) and can

11



be objectionable from the throughput point of view. We will elaborate on this

later in Section 2.6.

2.2 Pseudo Cholesky Decomposition

In this section, pseudo orthogonalization will be defined and will be required in

explaining the downdating operations. Let Z be an (m + n) × p matrix cascaded

fi'om two real-valued data matrices A E "P_×P and B E _'_×P, i .e.,

A
z = (2.2s)

B

A J_/,_-pseudo sample covariance matrix of Z is defined as zTJm/,_Z, and its

corresponding J_/,_-pseudo Cholesky decomposition is defined as

RT R = Zr Jm/,,Z = Ar A - BT B, (2.29)

where

J,.,.,/. = E "Pv(_+nlx (.-,+,_) (2.30)
-- In

is called a pseudo identity or signature matrix, and the p x p upper-triangular

matrix R (assuming that R exists and has full rank) is called the J,_/,-pseudo

Cholesky factor of the pseudo-covariance matrix of Z. For convenience, from now

on we will suppress the subscript (.),,/,, in J unless it is necessary.

2.2.1 Notations

A J-pseudo inner product is defined as

< U,V >a= uTJv =< v,u >a, V u, v E 7_ ''+'_, (2.31)
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and a J-pseudo vector norm is defined as

I[ullj = ux/_ju, Vu E T_m+n such that urJu > O. (2.32)

An (m + n) x (m + n) matrix H is said to be J-pseudo orthogonal if HTJH = J,

namely,

hi r

h r

T
hm+,_

J[ hi h2 "'- hm+, ] = (2.33)

IIh,ll2j < hi,h2 >j "'" < hl,hm÷n >j

<51,52>j ][h211_ "'" <52,hm+,>j

: • ., °

< hl,hm+,_ >j < 112, hm+,, >j ... [[hm+,,[[,_

=J.

Equivalently, we can say that H has J-pseudo orthogonal columns• This means

that for any two columns of H. their J-inner product satisfies

1 ,ifl<_i=j<_rn.

-1 ,ifm<i--j< rn+n.

0 , otherwise.

(2.34)

2.3 Simultaneously Up/Down-dating RLS Prob-

lems

Modifications of matrix factorizations have been of great interest in many appli-

cations [6, 45, 35]. In particular, recursively up/down-dating QR decomposition
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by adding somenew and deleting someold data rows will be examined, which

will then lead to the systolic implementations in the following chapters.

A time-recursive up/down-dating RLS problem amounts to find [ R(n +

1),u(n+l) ],v(n+l)and/or e(n+l)from the knowledge of [ R(n),u(n)],v(n),e(n),

the new data block [ Xn+,,yn+l ], and the old data block [ Xn-t+x,y,,-e+_ ], i.e.,

R(n)

0

[,\%+1 [

I-¥,_-_+1 [

or symbolically

Up/Downdatin9

a(n + 1) 1)

0 v(n)

0 _n+l

0 v.n__+ 1

(2.35)

X X X

X X

X

• .. X X

• .. X X

• .. X X

• .. : :

X X

+ + + ... + +

Following (2.4), then we have

Up/Downdating

® ® ®

® ®

®

0 0 0

0 0 0

• ° o

° °.

® ®

® ®

® ®

® ®

0 @

0 @

(2.36)

X(n) y(n)

Xn+l Yn+l

X,_-¢+1 Yn-_+l

Ik

Ik

R(n)

0

-¥n+1

Xn-t+l

y(n)

Yn+a

Yn-_+l

(2.37)
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Q(,_) &-(n)
Hi, H12 H,a

I

H21 H22 1t2s

Hal Hz2 Haa

R(_+ 1)

0

0

0

and the extended up/down-dated residual vector is given by

u(n+ 1)

v(n)

Vn+ 1

V--.re.- _+ 1

(2.38)

e_-(,_+ i)

x(_) y(_)

X,,+ x Yn+ 1

"¥n- g+ l Yn-e+l

I w(n+ 1) ]
--]- ..

-QX(n)v(n) - Q(,z)HI2v,_+I - Q(n)Hlav.___+l

-H_2V.+ l - H_av__-i+,

-- H32Vn+ 1 -- H33vn- ¢+,

(2.39)

(2.40)

2.4 Growing-Window with Exponential Forget-

ting Factors

If we replace the augmented LS equations in (2A) by premultiplying a diagonal

weighting matrix A(n) = diag(,\n-'Ik, ... , AIk, I_) to diminish the importance of

those previous observations (rows), where A E (0, 1] is a block forgetting factor,

then the exponentially weighted residual in (2.25) will now become

A(n + 1)e(n + 1) =
,ke(,,) ± v- Q(n)Q,_+I _+,

^.k V-Qn+l n+l

(2.41)

where we can see that the previous residuals are gradually deemphasized bv ,\.

Equivalently, we may consider the weight vector w(n) is chosen such that the
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A-weighted Euclidean norm of residual vector,

Ile(n)[[,x = i _i [IA_-ie;ll2

is minimized.

(2.42)

2.5 Sliding-Window with Fixed-window Size

A fixed-window or sliding-window RLS filtering needs to incorporate the new

data segments (updating) and also remove the influence of the obsolete data

(downdating). If we denote g as the number of blocks of the fixed-window size,

then for n > g, the fixed-windowed data can be written from the growing-window

data given in (2.2) by discarding the oldest n - g blocks of data, i.e.,

X(n) = " E _e_×p, y(n) = " E 7_ek • (2.43)

X, Yn

In order to obtain R(n + 1) from R(n), we need to update (include) X_+I and

downdate (remove) X_-_+l from R(n), i.e,

= k"r X,+, X r e+,X__e+,, (2.44)R(n + 1)rR(n + l) R(n)rR(n) +. ,_+, - _

where we have implicitly noticed that R(n + 1)TR(n + 1) = X(n + 1)TX(n -4-

t), R(n)rR(n)= X(n)TX(n),andX(,z+t)Tx(n+l)= X(n)TX(n)+XT_X,_+_ -

xT v Therefore, an updating operation in the direct data domain isn_e.t.1 -_n-- l+l •

equivalent to an addition in the second order domain (covariance data), while

a downdating operation is equivalent to a subtraction. There are two ways to

accomplish this: one is to perform updating and downdating at the same time,

16



or we can do them one by one consecutively. These will be discussed in details

in the following chapters.

Under time-varying conditions, much attention has been focused on schemes

employing exponential forgetting factors, while less on fixed-windowed ones. This

is partially due to the difficulty of downdating obsolete data encountered in the

windowed RLS model. But, fixed-window scheme should not be precluded sim-

ply because its computational burden. Other factors, especially fast parameters

tracking ability, actually favors this method under some non-stationary condi-

tions. To motivate the need for fixed-window under non-stationary condition, a

computer experiment is given to demonstrate the advantage of the faster con-

vergence for the fixed-window method over the method based on an exponential

forgetting factor.

2.5.1 An AR model computer simulation

Consider a second order autoregressive (AR) process {u(i)} as given in [25, pp.

204-6], where u(i)+a,u(i-l)+a2u(i-2) = v(i), i = 1,..., 100, with a, = -0.9750

and a_ = 0.9500 and u(i)+a_u(i- 1)+a2u(i- 2) = v(i),i = 101 ..... 250, with

a_ = -1.5955. v(-) is a white Gaussian noise with a standard deviation of 0.1,

except that from i = 20 to 30, v(i)'s are intentionally increased by a factor of 20

to account for temporary noisy perturbations. This is equivalent to lowering the

SNR by 26 dB during that interval. We note that there is also a step change at

iteration 100 in the parameters of the AR model where al = -0.9750 jumps to

a_ = -1.5955.

To make a fair comparison between the fixed-window scheme with a window

size g to the exponentially weighting scheme with a forgetting factor A in the sense
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that both schemes have the same self noise (i.e., fluctuation of the estimated pa-

rameters with respect to the optimum AR parameters) [40], we choose g = 50 and

A = _/(g- 1)/(g + 1). 100 simulations with different noise realizations were per-

formed. Fig.2.2 depicts the mean bias versus number of iterations in estimating

the AR parameters al and at. For the fixed-window scheme, the transient effect

of the changes in the noise (from iteration 20 to 30) is almost completely ab-

sent by iteration 80, while its effect on the exponentially weighted window is still

present. Even more significant is that tar the fixed-window case, after the sudden

change in the parameter al to a'l at iteration 100. convergence is reached with

only 50 more iterations, while for the exponentially weighted window case, about

150 iterations are required. This simple example shows that a fixed-window

scheme is indeed more suitable for fast parameter tracking under various non-

stationary conditions. Since the computational load of a fixed-window scheme

is greater(with up and down datings) than that of the exponentially weighted

scheme(with only updating), we need to be particularly concerned with its algo-

rithmic and architectural efficiencies. This comparison shows that a fixed-window

scheme is indeed necessary and important in speedy tracking parameters under

some non-stationary conditions.

Until recently, efficient downdating algorithms have been proposed [2, 48].

But efficient implementations and architectures of fixed-windowed RLS filtering

are still rarely considered. In the following chapters, systolic triarrays which are

suitable for VLSI design, are proposed to perform fixed-windowed RLS estima-

tion.
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Figure 2.2: Mean bias of estimating non-stationary AR parameter for fixed and

exponentially weighted windows.

2.6 Residual-based Selective Window

A new algorithm performing recursive least-squares (RLS) filtering is proposed.

Unlike a sliding fixed-window scheme, this new windowing scheme can be non-

continuous, depending on the estimated level of observation errors(residual). Bv

monitoring the residuals in a recursive manner (see (2.26) in Lemma 1), we can

effectively remove those spurious observed data by downdating them. This algo-

rithm is most useful when some short-time large interferences perturb the system

occasionally. In this respect, it outperforms existing schemes, either exponentially

growing or sliding. A computer simulation will be given to justify this.
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2.6.1 Robust LS estimations with outlier removal

A conventional LS solution w(n) E T_p for (2.1) is computed such that the Eu-

clidean norm of the residual vector is minimized. Notice that e;(n) E 7"_k, 1 <

i < n denotes the residual of the i-th data block, Xiw(n) - Yl, when we try to

makea best fit from all ofXi, 1 <<_i < n, to Yi, 1 < i < n. After obtaining

the optimum weight coefficient w(n) and also the corresponding residual vectors

el(n),..., e_(n), we can determine an index set `7 of outliers based on the crite-

rion, of ,7 -" {jll < j _< n, llej(n)tl > threshold } such that those extraneous

outliers can be removed. This is the first pass which comprises of: (1). deter-

mining the solution of w(n) which may be obtained from either normal equation.

Gaussian elimination or QR decomposition followed by back substitution; (2).

finding the associated optimum residual which is obtained by plugging w(n) into

e(n) = X(n)w(n)- y(n). Next, remove all Xj and yj, Vje if, from (2.1). Then

we have

Xj(n)w _ yj(n). (2.45)

Bv using the solution of (2.45), this completes the second pass of a robust LS

problems.

Figure 2.3 depicts the diagram of the 2-pass robust LS problem with outlier

removal[48]. For the two-pass case, a QRD is performed on [X y] followed by back

substitution to find the tentative w(n). After the residual vector is computed, a

decision is made to determine which data rows are to be downdated. When all

of the outliers are downdated from the Cholesky factor R and the associated u,

back substitution is required for the second time to solve for the final optimum

w(n) and the associated optimum residual can be computed.

For the one-pass case, the QRD operator needs not only to orthogonalize the
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incoming augmenteddata matrix, but also to monitor all of the residual vectors,

therefore, the computational load is higher in this case. However, by doing so, we

have eliminate the need to compute w(n) by back substitution and the matrix-

vector computation of X(n)w(n) - y(n). After all of the residual vectors are

available, those outliers can be downdated and finally a back substitution is used

only one time to compute the optimum w(n).

2.6.2 Comparisons of performances of different windows

A second AR model (for details, see the previous simulation case in Section 2.5.1)

is used again to demonstrate the advantages of the new window scheme. This

time v(i)'s are intentionally increased in amplitude by a factor of 30 from i = 55

to 57 and also from i = 155 to 157 to account for temporary large noisy spikes.

This is equivalent to lowering the SNR by about 30 dB during these intervals.

Figs. 2.4 and 2.5 compare the biases of estimating the AR parameters al

and a2. Figs. 2.6 and 2.7 compare the standard deviations of estimating the AR

parameters al and a2. Fig. 2.8 compares the standard deviations of the residuals.

Four windowing schemes are compared:

1. no windows are imposed (or equivalently, forgetting factor )_ = 1),

2. exponentially weighted window with forgetting factor ._ = _'/51.

3. fixed-size sliding window with window size ce= 50,

4. selective window with residual threshold = 1.0.

From these figures, we can see that the newly proposed window by selectively

rejecting data rows with large residuals gives the least bias in tracking the AR
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parameters and converges most rapidly. This is because this method has dis-

carded those highly perturbed data.

2.7 Other Issues

2.7.1 Mixed-type window schemes

The fixed-window of size g with an exponential block forgetting factor ,\ has a

row-weighting matrix he = (Ae-lIk, ''' , A/k, Ik). We want to modify" .\R(n) by

updating X,_+l and downdating AeX,__e+I, which implies that Rr(n + 1 )R( n + 1 ) =

lrT ir _2l ,;T _r
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2.7.2 MVDR: least-squares with linear constraints

The above derived algorithms only focus on recursive LS problems with no con-

straints. If a set of linear constraints are incorporated, after slight modifications[38],

they are still applicable, h'IVDR beamforming [9, 61, 42, 64] is one of the exam-

ples of such applications.

2.8 Conclusions

Up to now, we have assumed that QRD methods are readilv available while per-

forming updating/downdating. Explicit algorithms and systolic implementations

will be given in the following chapters, which include Householder transforma-

tion, (modified) Gram-Schmidt orthogonalization procedure, and Givens rotation

methods.
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Chapter 3

Block Gram-Schmidt

P seudo-ort hogonalization

3.1 Pseudo Orthogonalization Algorithms

We denote a J-pseudo orthogonal decomposition of Z as

z = [ g tt _-] , (_.1)
0

where H E R ('_+_t×' and H _- E /_Cm+_l×_m+n-p} constitute a J-pseudo orthogo-

nalization matrix, and R is a p × p upper triangular matrix. Notice that R is

indeed the J-pseudo Cholesky factor of the J-pseudo sample covariance matrix

of Z in that
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Rewriting (3.1) as

leads to

[ z, z_ ... z_ ] = [11, 52 ... lag]
, °.

rip

r2p

rap

(3.3)

Z 1 -- rl,hl

i

zi = rlila, + r2i132 + -." + r_ihi = _ rjihj (3.4)
j=l

P

Zp = Z rjihj.

j=l

Multiplying zTJ on the left-hand-side and rx,hTJ on the right-hand-side to the

first equation of (3.4), and also noticing that IIh,[]3 = 1. we have

_,i-- IIz,llJ (3.5)

and

la, = z,/r,1. (3.6)

Next, pseudo correlati,,g o1" taking the pseudo inner product of the second

equation in (3.4) with hi, i.e., premultiplying it by aT J, we have

r12 --< 111, Z2 >J • (3.7)

r22 can be obtained by taking the pseudo norm of z2 - r121ax = r22132 which gives

r_== Ilz_- r,_hl]la, (3.s)
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and h2 is also readily known as

h2 = (z_-,'12h,)/r_2. (3.9)

By continuing this procedure,at the i - th step, all of the i nonzero elements

in the i - th subcolumn of R can be computed by pseudo correlating the i - th

equation in (3.4) with hi, h2,..., hi-1 respectively, i.e.,

rl i -- < hl,Zi _j,

rj_ = < hi,z, >j, (3.10)

?_i-l,i

and r. and h; are given as follows:

rii -- [[Zi -- rlihi

and

< hi-l, zi >J,

ri-l,ihi-i lid (3.11)

derived as follows:

Algorithm 1 (Gram-Schmidt Pseudo Orthogonalization)

for j = 1,...,p, do

t=zj;

for i = 1,...,j - 1, do

Fij "-_ hi, zj >j ;

29

hi = (zi- ,'lihi ri-l,ihi-I )/rii. (3.12)

Therefore, a Gram-Schmidt pseuclo orthogonalization (GSPO) procedure is



t -- t - rohi ;

end;

rjj = lltliJ ;

h i - t/rjj;

end.

To derive the modified Gram-Schmidt pseudo orthogonalization (MGSPO),

we first take the pseudo inner products of every equations in (3.4) with zl and

also notice that < h, hj >j-" _Sij, SO We have

< ZI_Zi >J = T'llrli , (3.13)

< ZI_Zp >J -" T'llrl p .

Thus, the first row of R, rll, r12,..., rlv, and hi, the first column of H, can be

computed. Next, subtract rlihl from zi, i = '2,-.-,p,

Z2 -- Z2- r12hl -" r2252 ,

i

zi = zi- rtihl = _ rjihj , (3.14)
j--2

_p = zv-- rlphl = E rjihj •
j=2
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Similarly, the second row of R. 7"2_..... r2p, and the second column of H. h2,

are ready to compute as follows:

11_2[l_-= r_2 and h2=z2/r_2, (3.15)

<_ Z2, _'i >J "- r22r2i , (3.16)

< Z2, _5v >J = r22r2v •

Continuing this procedure. R and H can be fully obtained. This process is

essentially a modified Gram-Schmidt version of pseudo orthogonalization method

in that the columns of Z are successively subtracted by those pseudo projected

vectors determined by pseudo inner products and R is computed row by row

while H is determined column by column. A modified Gram-Schmidt pseudo

orthogonalization algorithm is thus given as follows:

Algorithm 2 ( MGSPO (I))

for i= 1,...,p, do

h_ = zi/r_i ;

forj=i+l,...,p, do

rij -< hi, zj _,j ;

zj "- zj - rijhi ;

end:

end.
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This algorithm requires (m + n)p 2 multiply-and-add, p(p- 1)/2 divisions and

p square roots operations, namely, O((m + n)p 2) flops. It is noted that another

MGSPO algorithm where R is computed column by column [26], can also be

derived in a similar way, and is given as follows:

Algorithm 3 (MGSPO (II))

for j = 1,...,p, do

for i = 1,.-.,j- I, do

rij =< hi, zj >j ;

Zj ---- Z j-- rijh i

end;

hj = zj/rj3 ;

end.

Based on the procedures above, we have the following theorem.

2 (Pseudo Orthogonal Decomposition) For any Z E 7_(m+n_×p,Theorem

J = , an J-pseudo orthogonal decomposition of Z, Z = HR, exists

-- In

and is unique subject to the signs oJ" each row in the upper-triangular matrix R

and the signs in the columns of the pseudo orthogona! matrix H, if and only if

zT JZ is positive definite.
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3.2 Square-Root-Free Triangularization Algo-

rithms

For many computations, it is advantageous to reduce the number of square root

operations or even eliminate them altogether. To this end, we can consider the

inverse of the diagonal elements of R and decompose R into

R = DV2R_, (3.17)

1/rll

l/r22

°

I/ l'pp

Tllr12 ...

r_2 '''

_iI rip

r22r2p

2
rpp

It is noted that the operation of D_/2 is only stated here for symbolic purpose; our

interest is essentially to find R_(DR can be obtained from the diagonal elements

of R_), or, r.: for 1 < i < p;i < j < p. A square-root-free MGSPO procedure

to obtain the upper triangular matrix R, or equivalently Ro, is given below.

Algorithm 4 (Sqrt-Free MGSPO)

for i= 1.... ,p, do

for j = i ..... p, do

riirij =< Zi_ gj >d ;

Z 5 = Zj -- (rilrij/r_i)z i ;

end;

end.
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3.3 Downdating the Cholesky Factor

In adaptive signal processing, it is often necessary to keep the Cholesky fac-

tor only, and then successively update/downdate this upper-triangular matrix as

new/old data rows become available. Updating via orthogonal transformations

such _ Householder transformation or Givens rotation method are well known•

Here we only consider using the Gram-Schmidt method to perform pseudo or-

thogonalization of 2.2S) which now becomes

g __ [:]
rll

d,

r12

r22

82

rip

r2p

• E _(m_-,,)xp,

rpp

dp

with R E T¢7'xp being upper-triangular and D E 7_'_p the appended data rows

to be discarded• We are interested in /_ E T¢ pxp such that /_T/_ = zTjz =

RTR - DTD. The signature matrix becomes Jp/,_. If we denote Z (°) = Z, then

the sqrt-free MGSPO can be rewritten as follows:

for i= l, .-., p, do

forj = i+ 1, .-., p, do

7"ii rij : < ZI i-I},Z _-1_ :>j ,"

z(O
J

• _ (_-_): z_'-') _zi ;

end;

end.
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Notice that

Z_0 = [_(0 .. z_0 Ti(p+,_×Ip-0"i+t " ; ]E , i=1, ..., p-1. (3.19)

In this scheme, even though we can take advantages of the zeros already in R

to reduce the computational cost by half, the number of flops is still of the order

of p to the third power (where p is the number of the columns of R) , and is given

by

' 3P2 P] (3.20)_--_[(n + i)(p- i + 1) + (n + i)(p- i)] = l[p 3 + 3np 2 + T + 2 "
i---1

This arises from the computational load in obtaining the lower right /_. To see

this, it is noticed that the work to compute rij, j = i,...,p, grows linearly with

the index i because pseudo inner products of size n + i are required in computing

the i-th row of/_. This load imbalance among row computations while down-

dating(or updating) a Cholesky factor makes the MGS methods less favorable

especially under massive-data(very large p) parallel computing conditions. An-

other drawback of this unmodified MGSPO(same for GSPO) is the difficulty in

implementing an efficient VLSI architecture to accomplish downdating, although

the sqrt-free computation is very attractive. To circumvent these difficulties, the

previous algorithms must be refornmlated to reduce the order of computation

and hopefully also to facilitate VLSI processing.

Next, we will reexamine the operations involved in computing _'s and succes-

sive modification of the appended data block D. Then an improved algorithm

can be derived. At each step, one row of the updated Cholesky factor will be

obtained. The key idea is to represent the modified data in the old Cholesky

factor in terms of the modified appended data. To clarify this idea. we will derive

this algorithm in the following discussion step by step.
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Step I.

z(O) -

_11 r12

r22

d_°ldT'

l_lp

F2p

{r11,''', /:lp) (3.21)

• . . F2p

T22 •.. F2p

• • =_ Z(O

rpp

d_ 0 ... d_ 1)

{_,1,..., _,_}c_,nbccomputed.,,'bile{,'11)....
are modified as follows:

,.0) } and {d(, 1) ...• /lp . , , dl,') }

. _ A(o)rA(o}

d(°)rd(°) j = 2,-.. p,rllrlj -- rllrlj -- 1 3 '

d_ 1) = d (.0) rllrtJd_°),- , j = 2,..., p,
-J i._1

rll?'lj

r_ ) -- rlj I;21 rll , j = 2,..-,p.

(3.22)

(3.23)

(3.24)

(3.25)
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What we need now is to expressrl_) in (3.25) in terms of d_') in (3.24).

With (3.22) and (3.23) substituting in (3.25), it can be shown that

Step 2.

with

= 1 d(O)r (o) eTA(O)rl} ) -- , _,j = .,._j, j=2,...,p, (3.26)
rl 1

fl _ 1d(°)1 • (3.27)
rll

Z (1) __

f,Td_') ffd_ ') ... ffd_'l

r22 r23 ... r2p

r33 ... r3p

rpp

dl -..

{_2_,"'. _p} (3.28)

r33

d(z:)

• • °

f_d_ 2)

r(2)
2p

r3p

rpp

d(2)

- Z(2)
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{ r22 ,"', r2p } are computed and t-13f'(2),•..., -lp"(2}} ,/r23r(2) ,"', "2p"(2)} and

{d(32) , ''' , d{p2) } are modified as follows:

-- ri2- --2"("T_,2"_(')+ d_'Tf,ffd_''

(3.29)

T22r2j ---
_ ,_(or,_(1)

r22r2j u 2 ,_j + d_l)rf, f_d_')

r22r2j - d_')r(I- f_flT)d_O,j=3,.-.,p, (3.30)

d_2) (1) F22 F2 _ ,.t(1)
= dj f._ -*2 , J- 3,...,p, (3.31)

_(2) _(1) r22 ;'2j (1)

,-,j = ,-,j _ ,._ = f,_(d_" _Jd ('_
7.22 2

= fTA(2)_j , j = 3...-,p, (3.32)

72272j

r_ ) = r2i ÷_2 "22' j=3'''''p" (3.33)

Again, by using (3.29, 3.30, 3.31), _(2) in (3.33) can be expressed in termsr2j

of d_ 2) in (3.31), namely,

r(2) 1 " "
2j = _[r22r2j r22r2iri2 ]

r22 r=22

_ I {72'_72j + d_')r(I - f,f_)d_ ')
1"22

_ I [d_,)_(i_f,f,_)][d_'_ %_5+'-d(_)]
r22 " _++2 '

_ 1 d_Or(/_ f, flr)d_,)
r22

= fTd_O , j=3,-..,p, (3.34)

with

1
f:+= --(/ _ f_r,_)d_')

r22
(3.35)
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Step 3.

Z(2) =

ffd fld? ... ffd  '

• *2 _p

r33 r34 • " " _3p

'/"44 " " " r4p

"..

rpp

d_ 2) ,_,4(2),, ... d(2)

O.{ _h3,"", _3_,} (3.36)

{ r33 ,''"

r (3)
_Ir34 ,..-

flTrl (3)

f?dl a)

f3TA(3)

l'-14 • . °

frd_3)

f?d_ a'

f3T,4(3)
,.Ap

F4p
-- Z(3)

r3p } are computed and jr,4_(3) ,"" r}3)} ,Ir24_(3) ... _(3)}, , . 12p

,.(3) ,.., "3p } and {d_ 3) ., d (3) } are updated as follows:

r2 3 r233 A(2)rA(_) d(2)rf,f_d(32)A(2)r¢ ¢TA( 2)= -- "*3 u3 + + "*3 L2L2 u3

r23 -- (2)r= d_ (I-- f, fT_ f2f_)d_2), (3.37)

A(2)rA(2) A(2)r¢ eTA(2)
r33F3j = r33r3j- "-*3 "-*j _-_3 LIL l ,,zj
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jV,.l (2) T ,¢ ,eTA(2)

_3 t 2 L2 uj

= raaraj- d_2}r(I - flf r- f2frld_ 2)

d_3) = d_2) r3Jd_2) j =4,...,p,
r33

r_ ) = ff(d_ :) - r3Jd(_))
7"33

T (3)
= fidi , j=4,...,p,

r_) = f_(d_: ) i:_j d¢2)-- _'T'- 3 )/

7"33

T (3}
= f_dj , j=4,...,p,

= r3s - j = 4,..-, p.
F33

Now, r(3_) in (3.42) can be written as

(3) = l___dta2)r f, flT f2f2T) d(a)raj (I -- -- _j
P33

_ frd(3)-- a j , j=4,...,p,

where

1
t'3 -- --(I- f, flr - f2fr)d(3:).

/"33

Proceeding in this way, it can be shown that

Step i

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

r_i----r_i d}i-llT( I flf_ 4, eT ,A(i-1)....... Li_lLi_l]_ i

_'._,j ----riir 0 - dli-')r (I - fl flT ..... fi-1 fT )d_,-,)

d_') d_/-') r;J i_](i-1)

rii

=f_dj k=l,...,i; j=i+l,...,p,

fi = 1(I flf_ f fT Xd(i-n
...... i-1 i-1] i

ril

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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By further defining two new quantities,

gi = r/,fiE_", i= 1,...,p

Gi = [-f_f_ ..... fif_ i= 1,...,p,

(3.51)

(3.52)

with Go _ I., a recursion of formula c_n be easily derived from (3.51) and (3.50),

(3.53)

EiET
e Te..'_×n (3.54)

2
rii

gi = c', ,4(i-It_r i--l Ui

Gi = Gi-i - fif[ = Gi-1

hence (3.46) and (3.47) become

- gi, (3.55)

" " d( i-t)r (3.56)
riirij = riirij -- --: gi •

A new MGSPO algorithm with rank-n downdating is thus given below.

Algorithm 5 New MGSPO rank-n downdating algorithm

Initialization:

dl °) =di, i- 1,..-,p.

Go = I..

RecuT=_ion:

for i= t,.-.,p, do

gi = Gi-t dl i-1_ :

- 2 el(i--l) T !i-1) 2 d(i--l) rr_i = rii---i Gi-1 d = r,--i gi ,"

Gi = Gi-1- ,, ,

for j =i+1, ... ,p, do

" " d(i-1)T Gi-1 d_ i-1)rii rij --" rii rij ----i
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d(.i-l_r
--" riirij ----3 gi ;

a?-- - dl
roi

end;

end.

It can be shown that this algorithm requires

P p

_(_ +_+('_+ _)+[ Z (,_+,_)]} = _p(p+2_ + l) (3.57_
i---I j=_+t

flops. Ifp >> n, this new method needs about O(np _') flops, while the unimproved

MGSPO method needs about O(np _"+ pa/3) flops. Therefore, asymptotically

when 2p 2 + 3p > 12n _ + 6n, it is more efficient to use this new method. As for

HGR [2], it can be shown that it needs

P

n-_-'_[2 + 4(p- i)]
i=1

multiply-and-add, np square-root and 2np division operations, or, (..9(np "_+ l.Snp)

flops. HHT [48] requires

P

_[(_ + 3) + 2(_ + 1)(p-i)]
i=1

multiply-and-add, p square-root and (p2 _ p)/2 division operations, or. O(np 2 +

1.Sp 2) flops. Our newly reformulated MGSPO becomes verv attractive especially

when p is much larger then n among existing methods.
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3.4 Simultaneously Up/Down-dating Multiple

Rows

Similar to the hyperbolic Householder transformations(HHT) proposed by Rader

and Steinhardt [48], our MGS pseudo orthogonalization can also perform rank-k

updating and rank-g downdating simultaneously.

Let

R

-¥oi d

and

b

J= Ik ,

-I_

then an algorithm for simultaneously up/down-dating the Cholesky factor R can

be derived in the similar way.

3.5 Block Systolic Triarray Using MGSPO

Fig.3.1 is a block MGSPO systolic array without square roots. The boundary

and regular processor elements (PEs) of a block MGSPO systolic array without

square-roots work as follows:

Boundary PE:

gi = Gi-ldi;

gigT.

Gi = Gi-i _'_i'
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Tt 2

Regular PE:

t r
riirij = riirq -- dTgi;

, , , d_
dj = dj -- riirij _

Tii
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Go-I

G,

G_

gi = Gi-ldi ;

Gi = Gi-I - gigT/rii ;

' dTgrii _" rii _ i •

J

d;

GiX_G _

gi)
,-_j= r;s - dTg,;

d_ = dj - ,'_dd,'_, .

G_ = Gi.

Figure 3.1: Block MGSPO systolic array without square roots
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Chapter 4

Block Hyperbolic Householder

Transformation

For vector-valued processing, Householder transformation is more desirable as

compared to the scalar-valued Givens rotation when performing orthogonal trans-

formations either from the viewpoint of computational flops counts or the accu-

mulated roundoff errors under finite computations [17, 46, 58, 63].

Gentleman and Kung [19] in 1981 proposed a systolic triarrav to perform

QRD using Givens rotation; later McWhirter [41] in 1983 extended this structure

by propagating data along the diagonal cells to obtain the most recent residual

data. Kalson/Yao [31] in 1985 and Ling/Proakis [37] in 1986 derived a similar

systolic structure using the MGS method. These systolic triarrays required O(p 2)

processors, which may be objectionable for VLSI design especially when p, the

order (i.e., the no. of columns) of the LS problem, is very large. Rader [47] in 1988

proposed a wafer-scale linear systolic array to reduce the number of processors

down to p/2. All of these works only deal with reeursive updating QRD.
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Now, a classof systolic implementations performing up/down-dating are pro-

posed. They are all basedon block-data processing,hencegeneralizeall previous

works in this area.

4.1 Hyperbolic Householder Transformations

Rader _c Steinhardt [48] in 1986 proposed a hyperbolic Householder transfor-

mation (HHT) to simultaneously perform up/down-dating. We will propose a

systolic architecture implementing HHT in Sec. 4.2. To begin with, let us define

a J-hyperbolic Householder matrix Hj as follows

Hj = Y - 2hhT/llh[l_, (4.1)

where h is a column vector, J is a pseudo identity matrix and < .,. >2 is the J-

pseudo vector norm as defined in (2.30) and (2.32). We note that Hj is Hermitian

and J-pseudo orthogonal, namely,

Hj = H T (4.2)

and

Hf J Itj = J . (4.3)

We can compress all of the J-pseudo energy of a vector a into its j-th entry

by premultiplying it (performing pseudo orthogonal transformation) by Hj and

choosing

h = Ja + au i (4.4)

with

= (-4-affllajll)llallJ. (4.5)
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Hereu s is a unit vector with all zeros except for its j-th entry. Then we have

Hja - -auj. (4.6)

4.1.1 Hyperbolic Householder transformation with up/

down-dating

An algorithm using HHT to update A = [al, ..., ap] and downdate B = [bl,..., bp]

from the Cholesky factor R is presented below.

Algorithm 6 HHT Up/downdating

for i = 1,...,p, do

÷,i = _r/2` + a_ai- bTb, ,"

if r. < O, 7"ii = --7"ii ;

for j = (i + l),...,p, do

rij = (r.rlj + a/raj - b,.rbj)/_. ;

aj --" aj -- _n."
_.ii+rii _t

bj = bj - _,..
_ii+7,ii _t,

ifrii < O, a.7 = -aj; bj = -bj;

end;

end.

4.2 Block Hyperbolic Householder Systolic Ar-

ray

Because of the nature of the hyperbolic Householder triangularization procedure,

it can be shown [38] that (_± = Ha(1)x... H_P)', where H(j i)x E 7_ 2kx2_ is the
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lower right submatrix of the hyperbolic Householderreflection matrix in zeroing

X + y+
out the jth column of appended data , with [X + y+] and [X- y-]

X- y-

representing the new and old data block to be up/downdated respectively. The

residual vector e therefore can be written as e = -_s 1)a" • .. _sP)_v, which can be

computed by a series of backward matrix-vector multiplications[38]. This systolic

structure will be considered below. \Ve note that If the block size k is equal to 1,

then it reduces to that of Gentleman _," Kung's [19] and McWhirter's [41] Givens

algorithm.

A block HHT systolic array for RLS filtering is given in Fig. 4.1. A modifi-

cation suggested by Tsao in 1975 can be used to slightly reduce the flop counts

and roundoff errors as well as make a two-level pipelined implementation become

feasible [38]. Fig. 4.2 depicts the modified boundary and regular processors.
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e

I

0©

t

(X+_ X- )

t = I_.. uT " X+

(,,, u) ,_,u) _ -x- '

y+ = x + - t. u.
(Y+' Y- ) y- x-

unit delay

Figure 4.1: Block hyperbolic Householder systolic array

5O



(0"_ ,S,U)

(X+_ X- )

(y+, r-)

s = _2+ iix+ll] _ IIx-II],

U --" X +

X-

T'_8 .

-- tl T . X +

_X_

t = -S/s ,

d-- r-t

y+ = z + - d. u_+_, i = l ..... k .

YF = x-_ - d. uk+i+_, i = 1, .... k .

Figure 4.2: Modified processing cells for Block HHT systolic array
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Chapter 5

Planar and Hyperbolic

Rotations

A dual-state systolic structure is proposed to perform joint up/down-dating op-

erations encountered in windowed recursive least-squares (RLS) estimation prob-

lems. It is based on successively performing Givens rotations for updating and

hyperbolic rotations for downdating. Due to data independency, a series of

Givens and hyperbolic rotations can be interleaved and parallel processing can

be achieved by alternatively performing updating and downdating both in time

and space. This flip-flop nature of up/down-dating characterizes the feature of

the dual-state systolic triarray. To further reduce the complexity and increase

the throughput rate, Cordic cells can be used to mimic the operations of row-

broadcasting where only one sign bit is propagated along each row of processors.

Efficient implementation on the evaluation of optimal residuals and a transforma-

tion of the hyperbolic rotation to an algebraically equivalent orthogonal operation
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to provide a more stable implementation are also considered. This systolic ar-

chitecture is promising for the VLSI implementation of fixed size sliding-window

recursive least-squares estimations.

5.1 Introduction

Consider a least-squares (LS) problem at time n given by,

x(n)w(,,) _ ,j(,), (5.1)

where X(n) is an g × p fixed-windowed data matrix with real-valued elements

taken either from a single or p time-indexed multichannel data sequences,

Xn--gq-l,l Xn--gq-l,2 • . • Xn_g.4.1, p

Xn--_+2,1 Xn--£+2,2 • . . Xn_g+2, p

: : '.. :

;Tn,l Xn,2 • . . Xn, p

x(n)=

T
Xn-- _._-I

X T
n--l+2

T
Xr_

and y(n) is the real-valued e x 1 desired response vector,

_e×p, (5.2)

y(,_) =

Yn--g4-1

Yn- _-+ 2

/Jr_

E R e. (5.3)

We denote g as the window size, p as the order of the system (possibly the number

of sensors in a multichannel filtering problem) and n is the time index(n > g is

assumed). The LS problem is to find a px 1 optimum coefficient vector tb(n) E NP,

such that the Euclidean norm of its associated residual

_(.) = x(_)w(,,)- v(,_) (5.4)
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is minimized. If X(n) has full column rank, then it is well known that from the

normal equation (NE) approach tb(n) is given by

_(n) = (Xr(n)X(n))-aXT(n)y(n). (5.5)

The increased dynamic range requirement (due to the squaring of the condition

number [21]) precludes the NE method for some critical applications in modern

digital signal processing. Therefore, in order to achieve the same computational

precision, direct matrix factorization methods employing orthogonalization to

preserve the condition number (such as the QR decomposition (QRD)), are pre-

ferred especially when it is likely that the numerical instability may arise due to

ill-conditioning. Furthermore, the NE method of (5.5) is limited to block opera-

tions, while the QRD method is amenable to recursive operations implementable

with various parallel and systolic architectures.

Recently, some efficient up/downdating algorithms have been proposed [2, 48,

8]. But work on efficient implementations and architectures for a fixed-windowed

RLS filtering with such up/downdating is still fragmentary. In this paper, we

propose two systolic arrays[33, 44, 34], which are suitable for VLSI designs, to

perform fixed-windowed RLS estimation. The first one is denoted as the dual-

state systolic triarray, which resembles Gentleman and Nung's triarray [19] with

the same hardware complexity, except the clock rate of the processor is set two

times higher. The second one is realized by using Cordic cells to reduce the hard-

ware comple×ity. Efficient schemes to obtain optimal residual have not been fully

addressed for the windowed RLS estimation. Along this direction, we consider

the feasibilities and limitations based on systolic implementations. A transfor-

mation of the hyberbolic rotation to a more stable orthogonal operation is also

considered in this chapter.
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In Section 5.2, the basic up/downdating RLS estimation is considered, fol-

lowed by the dual-state systolic architecture in Section 5.3, and Cordic processor

implementations in Section 5.4. In Section 5.5, we consider the recursive estima-

tion of optimal residual with systolic implementation. Finally, in Section 5.6, a

transformation of the hyperbolic rotation to a more stable orthogonal operation

is derived. Conclusions are then given in Section 5.7.

5.2 Windowed RLS Estimation

Suppose at time n, the QRD of [X(n) i y(n)], where X(n) and y(n) are given by

(5.2) and (5.3) respectively, is available. Then

Q(n)[X(n)iy(n)]= [ R(n) ! u(n) ]'0 v(n)
(s.6)

where Q(n) E _Rtxt is orthogonal and R(n) E _.P×P is upper triangular. Thus the

optimum &(n) is given [21] by

= ,,(n). (5.7)

R(n) is called the Cholesky factor of xT(n)X(n) in that RT(n)R(n) = XT(n)X(n).

The Choleskv factor can be obtained by computing the p × p sample covariance

matrix xT(n)X(n) first, followed by Cholesky decomposition. But, this method

squares the condition number in forming the covariance matrix. A numerically

more stable approach is to perform QRD directly on the data matrix X(n) and

in this way the condition number of the LS problem is maintained.

Now at time n + 1, we want to obtain R(n + 1), u(n + 1) and hence w(n + 1)

with the minimum effort. If the window size is growing, then we can simply
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update R(n) by p Givens orthogonal transformations to zero out x r and obtainn+l

R(n + 1) [41]. But with a fixed sliding window scheme, in addition to zeroing

r by orthogonalization, it is still necessary to downdateout the new data row x,+ 1

r We define updating as a series of Givens rotationthe obsolete data row, x__t+ 1.

operations such that an additive rank-one modification of the Cholesky factor

is accomplished, and downdating as hyperbolic rotation operations such that a

subtractive rank-one modification is made. It is noticed that at time n + 1, the

data matrix

T
Xn-_+2

x(n + l) = (5.8)
T

X.

X T
n+l

T
is obtained by adding a new row data x,+lr and removing an old row data xn_l+ 1

from X(n) as can be seen by comparing (5.2) with (5.8). Since RT(n+I)R(n+I)

= XT(n + 1)X(n + 1), we have

Tnr( + 1)R(n + 1) = + T (5.9)-- Xn_g+lXn_g+ 1.

Rader and Steinhardt [48] proposed a hyperbolic Householder transforma-

tion to update multiple new data rows and downdate multiple undesired ones

simultaneously. Alexander et al. [2] suggested performing orthogonal rotations

for updating followed by hyperbolic rotations for downdating. It can be shown

that hyperbolic rotation is merely a degenerate case of hyperbolic Householder

transformation, if we do not distinguish a rotation matrix from a reflection ma-

trix [21]. This is analogous to a Givens rotation can be considered as a special

case of a Householder transformation. To facilitate systolic array processing, we

will adopt the latter approach for windowed RLS filtering which involves only

56



scalarcomputations.

5.2.1 Up/down-dating Cholesky factor

The basic up/downdating of the Cholesky factor is considered in this section.

Given [R(n)iu(n)], we can obtain [R(n + 1)iu(n + 1)] by first updating

via p Givens rotations, i.e.,

R(_) _(_)

r
Xn+l Yn+l

X rn- t+ 1 Yn- _+ 1

Gp,p+ _ ... G2,p+ l G l,p+ _

k(n+1) }

-- 0 :

x Tn--_4-1

R(n)

T
Xn+ 1

X r
n-t+l

_,(n+ l)

v,(n + 1)

_/n-- ¢4-1

i _,(n)

Yn+ I

: Yn-t+l

then downdating the right-hand-side via p hyperbolic rotations, i.e.,

Hp,p+ 2 • • • H_,p+ 2 Hl,p+ _

R(n+ 1)

= 0

0

k(_+ l)

0

T
Xn-g+l

! u(n + 1)

: v,(n+ 1)

: v2(n+ 1)

i a(,,+l)

: v_(n + 1)

yn-_+l

(5.10)

(5.11)

(5.12)
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Here a (p + 2) x (p + 2) Givens rotation matrix Gi,p+l is used to zero out the

(p + 1, i)-th element of the matrix in (5.10), i.e.,

Gi,p+l

i :

I

Oq
!

_p+l ,

I

Ci

I

--8 i

8i

Ci

1

: [ :

• --- I :
I

I

c_p+l ] 0

k

(5.13)

where

2
ci=_;/qcr_+@+l and si=cb,+llqa_+%,+l. (5.14)

Similarly, a (p+ 2) x (p+ 2) hyperbolic rotation matrix Hop+2 is used to zero out

the (p+ 2, i)-th element of the matrix in (5.11),

Hi,p+2

I

oq _-i -.gi

I
!

c%+2 I --_i ci
t.

O/p+2
0

(5.15)

where

-- _ (:_p+2" (5.16)

Since Gi,p+z only affects the i-th and (p + l)-th rows of the matrix in (5.10),

and Hi.p+2 affects the i-th and (p + 2)-th rows. we can combine (5.11) and (5.12)

in the following manner,

Hp,p+2 • • • H2,p+2 Hl,p+_Gp,p+ 1"" Gl.p+ 1

i

T
Xn+ 1 Y.+i

X r
n-£+l Yn-e+l
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n(n+l)

0 : vl(n + 1)

0 : v (n+ 1)

(5.17)

5.3 Dual-State Systolic Triarray

Similar to the systolic QRD triarray proposed by Gentleman and Kung [19], which

only performs updating, a dual-state systolic triarray performing both updating

and downdating is given in Fig. 5.1. In a multi-channel filtering problem, for

every sensor (i.e., column of the data matrix) there is a delay buffer of window size

to queue up the data. Therefore each data will be first fetched and processed

(updated) and then stays in the queuing buffer for _ data clocks and finally will be

reprocessed (downdated) by the triarray. Before the skewed data rows enter the

arrays, there is an array of selection switches that alternatively take in new data

and old data. The clock rate for the processors is set at twice the input data rate

so that both new and old data can be processed within one data clock. We use a

black circle • to denote a processor working on a Givens rotation(updating) and

a white circle o to denote a hyperbolic rotation(downdating). We also note that

only one control bit is required in determining whether updating or downdating

operation needs to be performed.

To this dual-state systolic triarray, data rows are skewed with updating and

downdating data interleaved to form a sequence of up/down-dating wavefronts

which will then impact upon this triarray sequentially. All of the wavefronts are

consistent, i.e., the involved processors will all perform updating or downdating

according to the underlying wavefront. As one updating wavefront finds its way

along the triarray, one downdating wavefront follows immediately behind, and
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then followed by another updating wavefront, and so forth.

Every processor,after experiencingone updating wavefront, will switch from

updating to downdating operation as the next downdating wavefront will pass

through it immediately following the previousupdating wavefront. Therefore,all

processorsperform updating and downdating successively.Thus they are doing

flip-flops in time, which characterizes the temporal duality of this systolic triarray.

A spatial duality can be also observed as follows. While a processor is per-

forming updating, all its adjacent processors, either vertical or horizontal , but

not diagonal neighbors, are performing downdating. As an example, consider the

(2, 3) processor in Fig. 5.1. When this internal cell is performing updating, its

right neighbor, the (2, 4) internal cell, and its lower neighbor, the (3, 3) boundary

cell, are being impacted by the downdating wavefront just before the updating

wavefront that impacts upon the (,2, 3) internal cell (recall that up/downdating

wavefronts occur consecutively). Similarly, its left neighbor, the (2, 2) boundary

cell, and its upper neighbor, the (1, 3) internal cell, must be performing down-

dating, too, as these two neighbor cells are confronting the downdating wavefront

which follows right after the updating wavefront associated with this (2, 3) cell.

We therefore say that this triarray also performs flip-flops in space.

In all, for each time snapshot, we see all processors are doing updating and

downdating evenly distributed over the entire triarray, and for the next snapshot,

they change their roles. The phenomenon of flip-flops both in time and space

characterizes the dual-state systolic triarrays. The wavefronts for the updating

and downdating then propagate pairwise toward the lower-right direction in the

triarray.
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5.4 Cordic Processors

Cordic (coordinate rotation digital computation) processors [62, 1, 14, 47] have

been shown to be able to efficiently perform Givens and hyperbolic rotations

with simple operations like add, subtract; and shift, and one fixed-number

multiplication.

5.4.1 Givens rotations

First consider the determination of the rotational angle 0, such that a vector

[a,b] r is rotated into [l_l@ + b_,0] r, i.e.,

] [cos0sin0][a]0 -sinO cosO b
(5.18)

We can split 0 approximately into N predetermined minirotational angles with

the proper choice of the directions of these angles, such that each minirotation

only involves additions and binary shifts. To see this, a recurrence of minirota-

tions can be written as

bi+t -- sin0i cos 0i bi

where

= cos Oi [ 1 t n0][a1- tan Oi 1 bi

= cos0i ,i=0,1,-..,N- 1, (5.19)

--pi2-iai -'k bi

a o 12
_=

bo b

(5.2o)
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and

tan Oi = pi2-'.

The planar sign bit pi is determined by

¢

1 , if aibi > O,
pi L- 1 , otherwise,

and the intentional choice of the minirotaion angle Oi

shift-by-i bits (multiplied by 2 -i) operations.

that

(5.21)

(5.22)

in (5.21) renders the

If the number of minirotation stages N is large enough, it can be shown [62]

1bN tan 01 1 b

0

(5.23)

(5.24)

/l_c N-1= 1-Ii=o cos0i _ 0.60725 is called a planar rotation correction factor and is

usually independent of N when N is large enough. The rotational angle is thus

uniquely determined by the planar sign bits pi's,

N-1

0 _ _ Pi tan -1 2 -i. (5.25)
i=0

In our updating scheme, it is necessary to apply the same rotation to all the

subsequent data on the two involved data rows (i.e, with one being in the triarray

and the other the new data row being updated). In fact, it is not necessary to wait

until all the minirotation planar sign bits pi's are generated from the boundary

cell. In order to take advantage of the fact that all the subsequent data on these

two rows of data are to be rotated in the same manner as that in the boundary
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cell, we can pipeline these minirotaion angles to the internal cells as soon as

they becomeavailable. Thereforeevery time a planar sign bit is generatedby the

boundary cell, it canpropagateto the rest of its right-hand-side internal cellssuch

that the others canstart doing minirotations as soonas possible.Thus along the

horizontal direction, the clock rate of the mini-clock of the Cordic cells is N + 1

times the rate of the vertical direction, which is set equal to twice the incoming

data rate. Because the systolic miniclock rate along the horizontal data rows is

much faster than the incoming data rate, we can consider the Givens rotation as

almost simultaneously applied to every data on these data rows, or, the rotational

angles are being broadcast along the remaining internal cells in the same row.

5.4.2 Hyperbolic rotations

For the same reason as above, a sequence of mini-hyperbolic rotations can be

found to accomplish a hyperbolic rotation as follows:

cosh ¢ - sinh¢

- sinh ¢ cosh ¢

a

b

Now, a recurrence of mini-hyperbolic rotations are given as

io,,1]Ico,_,,nh i-1[la,
I. bi+l - sinh 6i cosh 6i J bi

= cosh ¢_ I 1 t,n,o][.1- tanh ¢i 1 bi

(5.26)

al- _i2-i-lbl ]
= cosh¢i , i = 0,...,N - 1, (5.27)

-ai2-i-lai + bl

63



where

and

(5.28)

tanh ¢_-- cri2 -i-1, (5.29)

and the hyperbolic sign bit ai is determined by

(

) 1 , if aibi >_ 0,
O"i

[ - 1, otherwise.
(5.30)

If N is large enough, it can be shown [1] that

aN

bN
1 ])[:

- tanh ¢i 1

(5.31)

-

0
(5.32)

We call K_h = II_o 1 cosh ¢_ _, 1.2051 the hyperbolic rotation correction factor.

5.4.3 Cordic cells

The Cordic implementation of the dual-state systolic array has the same general

triarray structure as that in Fig. 5.1. Since we have split a rotation into N

minirotations and one correction factor multiplication, the time needed to per-

form a basic processor operation in Fig. 5.1 will be divided into N + 1 miniclocks,

too. We notice that rotating two rows of data needs not take place sequentially

from one column to another, which is the case considered in Fig. 5.1. In fact we

can broadcast the rotational parameters ((c,s) or (5, _) from the boundary cell
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to all of its right-hand-side internal cells such that their rotations can be com-

pleted simultaneously. Unfortunately, in implementing VLSI circuits, the routing

difficulty incurred due to non-local connections prohibits such a broadcast opera-

tion. This is the reason why a systolic array processing algorithm is much favored

from the VLSI viewpoints in addition to its massive parallelism and regularity.

However, by using Cordic cells, we are able to mimic the row broadcasting of

rotational parameters with only local connections.

Cordic rotations distinguish themselves by performing minirotations sequen-

tially. The minirotational parameters are carried solely in a stream of sign bits.

These minirotational bits can be sequentially passed along without waiting for

the availability of the entire bit stream. Therefore, the right-hand-side internal

cells can start doing minirotations as soon as these sign bits are available. The

stream of sign bits are propagated horizontally along the right-hand-side internal

cells. By doing this, new data are skewed with only one miniclock in between,

instead of one processor clock. We also observe that the Cordic implementation

reduces the wavefronts of skewed data from an tilting slope of 1 to 1/(N + 1).

If N is sufficiently large, we can say the data is essentially not skewed and a

rotation is taking place simultaneously on each row of the triarray.

Fig. 5.3 (a) and (b) depict the boundary and internal Cordic processing cells,

while Fig. 5.3 (c) and (d) describe tile associated sign bit generator and shift reg-

ister operation. To differentiate between the following updating and downdating

operations, all the downdating parameters are enclosed in the parentheses. We

also use a solid arrow J. to represent a data movement at a system clock rate and

a dashed arrow --> at a miniclock rate in these figures. Along the horizon-

tal direction, instead of passing the rotational parameters c,s(_:, k) at a system
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clock rate (which is the same as the clock rate along the vertical direction), the

minirotational sign bits pi's (a_'s) move towards the right at a faster miniclock

rate.

The boundary cell of Fig. 5.3 (a) is responsible for determining the sign bits

pi's (ai's). It has an internal memory to store the diagonal element r in the

upper triangular matrix. At the first miniclock, i = 0 (i denotes the miniclock

index of a complete rotational cycle), it fetches data y from above. During the

following minicloeks 0 < i < N, r and y are cyclically fedback to the minirotator

to successively generate the minirotation sign bit of pi(o'i) and propagate it to

the right-hand-side internal cell. In the last minirotation stage of i - N, the

internal data r is multiplied by a correction factor K:c(K:h) and restored to its

local memory. This completes a rotational cycle of the boundary Cordic cell.

As to the internal Cordic cell in Fig. 5.3 (b), it also takes in external data

from above in the first miniclock, then successively feedbacks data and rotates

according to incoming sign bits. In the meantime, these sign bits are also propa-

gated to the right. In the last miniclock, both data r and y on two feedback arms

are multiplied by the correction factors, with one restored to its local memory

and the other output downward for further processing.

Both boundary and internal Cordic cells share many architectural similarities.

The differences between updating and downdating in Fig. 5.3 (a) and (b) are:

(1). the correction factors: (2). the shift register indices differ by one; (3). the

signs at the lower left adder input of the minirotators.
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5.5 Recursive Estimation of Optimal Residuals

We have considered the recursive evaluation of coefficient vector tb(n) in Section

2. In many applications such as beamformation, array processing and filtering,

and communication, the optimal weight coefficient vector may not be of direct

interest. Instead, we may be interested in the newest optimal residual _,, which

is the last (i.e., the g-th) element of _(n) in (5.4). Information is then extracted

from the optimal residual for various applications. In this section, we consider an

efficient implementation to obtain the newest residuals under the up/downdating

operations.

From (5.6), we can separate Q(n) into two terms as

r QI(_)
Q(n) = [ ,

[ Q_(.)
(5.33)

where Ql(n) e _v×l, Q2(n) e _(_-p)×l, such that

Q_(.)x(_) = R(,_),

Q_(,_)X(n) = O.

Also from (5.4), (5.6), and (5.17), we can rewrite the optimal residual vector as

[ vx(n+ l) I (5.34)_(n+ i) = -Q_(n + 1) v2(n + 1) "

Thus, a basic issue is the efficient recursive evaluation of Q2(n + 1). Define

Q,(_)

(5.35)Q(,_+ 1)=
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then

Q(.+ 1)[x(.+ 1)y(.+ i)1= ×L,

X T
n--l+l

From (5.17) and discussions in Section 2, denote

: _(n)

Yn+l

Yn-l+l

(5.36)

H (n + 1) = Hp,_ 2 . . . H2,p+ 2 H,,p+ 2,

Then we have

G(n + 1) = Gp,_2"" G2,p+2Gl,p+2.

Q(n + 1)= H(n + 1)G(n + 1)Q(n + 1)

if updating is performed first and

(5.37)

Q(n+ 1) = G(n + 1)H(n + 1)Q(n + 1) (5.38)

if downdating is performed first. Suppose updating is performed first, then we

have

Q(n+ 1)= H(n+ 1)Q_,(n + 1), (5.39)

where Qu(n + 1) = G(n + 1)Q(n + i) is defined as the Q matrix associated with

updating only. It can be shown that G is of the form

c(. + l) =

Z(n + 1) h(n + l)

kT(n + 1) FI_'=I c_

0 0

0

0 ,

1

where Z(n + 1) is a p x p matrix, and therefore Q,, is of the form

(5.40)

Q_(,_+ 1)=

Z(n+l)Q_(n) h(n+l) 1

kT(n + 1)Ql(n) nl-L=l ci 0

0 0 1

(5.41)
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It canalso beshown that H is of the form

2(,_ + i)

n(n + i) = 0

kT(n + 1)

and therefore Q(R + 1) is of the form

2(_ + 1)z(_ + 1)Q_(_)

Q(n+ 1) = kT(n + l)Q,(n)

kT(n + 1)Z(n + 1)Q,(n)

0 h(n + 1)

1 0

0 l'I_'=__

(5.42)

2(,_ + 1)h(,_+ l) h(,_+ I)
P[I=1 c_ 0

_.r(,, + 1)h(. + 1) IlL, _,

(5.43)

From (5.34) and (5.41), we can obtain the residual vector when the updating

wavefront passes through the array and is given by

a,,(n+ I) ] -QT(R)k(R + l)v,(n + I)

$=(n+l)= e,,,(n+l) I - -l'I_=,c,.v,(n+l) , (5.44)_(,_ + 1) -,_(. + 1)

where e_ 1 and e_ 2 are the newest residuals associated with the updating and

downdating respectively at time n + 1. Since at this point the downdating has

not yet been performed, e_2(n + 1) is not considered as a residual.

From (5.34) and (5.43), we can obtain the residual vector when the downdat-

ing wavefront passes through the triarray. Again. we are only interested in the

newest residuals (the last two elements) and are given by

-I-Ii=_ c_. v_(n + 1)- hr(n + 1)L'(n + 1)v_(n + 1)

(5.451

where el and e2 are the residuals associated with updating and downdating re-

spectively. From (5.17), it can be seen that vl(n + 1) and v2(n + 1) can be
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obtained naturally from the up/downdating operations in the triarray. If the

updating parameters ci's are propagated down to the diagonal boundary cells

and are cumulatively multiplied as in [41], when the updating wavefront passes

through the triarray, the term I'[ ci in (5.44) can be obtained. A multiplier call is

then used to obtain e,, 1(n + 1) = - 1-Ii+_vci • v_(n + 1) as in [41]. In fact, although

the window size is l as described in (5.2), the residual e,,, (n + 1) is estimated

from [xn-i+l," • •, x,, x,_+l] T and [yn-¢+x, "" •, y,,, y,,+l]r of window size g + 1 since

downdating of x,_-l+1 has not yet been performed. That is

1) T (5.46)--- Xn+l W[n--l+l,n+l] _ Yn+l,

where 6_,_-_+l,r,+ll denotes the optimal coefficient vector estimated from data

[x,,__+l,.. •, x,,,x,_+l] T and [y,_a÷l,...,y.,y,+,] r.

Also, when the downdating wavefront passes through the triarray, if b4's are

propagated down to the diagonal boundary cells and are cumulatively multiplied.

From (5.45), the downdating residual can be obtained easily. It is estimated from

[x,,-z+2,. • •, x,,, x,,+l] r of window size L That is,

e2(n + 1) r -= x_-_+x w[_-t+2._+ll - Y_-I+l. (5.47)

Obviously, the residual at time n - l + 1 is post estimated by data from n - l + 2

to n + 1 and appears at time n + 1. This kind of property may or may not be of

practical interest in real-life applications. As to the updating residual e,(n + I),

due to the term h T(n + 1 )k'(n + 1 )vz(n + 1) which is not available from the systolic

implementation, we are unable to extract el(n + 1) from the triarray. However,

(5.45) provides a simple relation for this updating residual before and after the

downdating. That is,

el(n+l)=e_,,(n+l)-hr(n+l)k(n+l)v2(n+l). (5.48)
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If downdating is performed first, then by the sameargument as above, we can

obtain

and

P

• = xn-l+lw[n-l+2,n] -- Yn-_+l,
i=l

(5.49)

P

_1(- + l) = - 1-Ic,. _,(. + i) = x_ ^.+iw[.-i+2,.+11 - y.+_. (5.50)
iffil

From (5.4) and (5.8), it is obvious that this e,(n + 1) is the exact residual we

are looking for. However, a drawback for this scheme is that downdating first

before the updating may incur a numerical stability problem [2]. A dual-state

up/downdating systolic array for the recursive residual estimation is also shown

in Fig. 5.1.

5.6 Tradeoffs Between Numerical Stability and

Hardware Complexity

From the numerical stability point of view, the usage of hyperbolic rotation for

downdating may be objectionable, even though it has been shown to be forward

(weakly) stable in [3]. One of the reasons is that, from Fig. 5.2, _ and _ generated

by the boundary cell can be very large. Once these fi and _ are sent to the internal

cells for further processing, the computations may involve two other parameters

r and z which are not scaled (i.e., they can also be very large). Therefore, z' and

the updated r may suffer large amount of roundoff errors, or even overflows. To

stabilize this problem, we consider an algebraically equivalent set of orthogonal

parameters to replace b and _. Along this line, let us first consider the relation

between updating and downdating.
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Supposewe have a known p x p upper triangular matrix R and want to

downdate a vector x to obtain an upper triangular matrix ft. That is,

_r[_ _ RTH _ xx T. (5.51)

If we know/_ instead of R, then

RT/_ + xx r = RTR (5.52)

becomes an updating problem.

To downdate R, we use a sequence of hyperbolic rotations to zero out x as

/_ -- Hp,p+l.-. H2,p+lHl.p+l x T •
0

On the other hand, to update/), we use a sequence of Givens rotations to zero

out x as

[R]Gp._ l "'" G_.p+ l Gl.p+ l = . (5.54)
x T 0

Suppose now, for this updating problem, we know R instead of/_, and k - 1

updating has been done. That is

Gk-l,p-l-I "'" _I,p-I-I

Rk-1

Rp-k..l-1

O, . . . , O, x(k-l), ...

, (5.55)

where R k-1 denotes the first k - 1 rows of R, /)p-k+l denotes the last p - k + 1

rows of/), and x (k) denotes an element of the k-th updated vector x. At the k-th

rotation, let us focus only on the k-th and the last rows, then we have

O, "", O, 7"k,k, "", _'k,p

o, ..., o, ...
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F

I O, "", O, rk.k ...... , rk,p

[ O, 0 _(_) • • x(.k)O, a'k+l _ • t-

where rl.j and rid are the (i,j) elements of/_ and R respectively,

(5.56)

I_2 x(kk-t)_,rk,k --- k,k "_ (5.57)

and for j = k + 1,...,p,

fk.k X_k-_)
Ck _" _, 8k -"

I'k, k l'k, k

i rk.j = Ck_k.j + skx_ k-i),
_k) . (_¢-1)X -- --Skrk, j "3I- CkX J

(5.5s)

From (5.57) and (5.58), we can solve P and x (k) easily and the downdating can

now be achieved by using Givens rotation parameters given by

_l,,k = ir_.,k- x_ k-l)2, (5.59)

for j = k + 1,...,p,

_k,k x (k-l)
Ck "_" _ , ,5k -" --

rk,k rk,k

= --s_f'k,j +

(5.60)

Since c_ and s_ are bounded parameters (i.e., < 1), even though 7_k,j can be very

large when computing x! _), it is only multiplied with sk which is bounded. That

is to say, _k,j will never be magnified during the computation. Thus, this scheme

is more stable than hyperbolic rotation. The operations of the processing cells

for the systolic implementation are shown in Fig. 5.4.

With this transformation, the operations of the downdating part are differ-

ent from that of the updating part. Itowever, both provide stable numerical
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results especially under finite precision computations. If we want to make both

operations identical (except fro sign differences) for implementational efficiency.

Transformations on c and s of Fig. 5.2 can be performed such that new _ and ._

are given by

Therefore we have

(_= -, $ = - (5.61)
C O

(5.62)

which share the same form as that of the corresponding downdating operation.

However, it loses the numerical property of an orthogonal transformation and

hence is less desirable under finite precision computations. The operations of

this updating transformation are shown in Fig. 5.4.

5.7 Conclusions

A dual-state systolic triarray performing up/down-dating operations for fixed-

window RLS filtering has been proposed. While previous researches have been

centered on QRD-based systolic triarray with exponentially forgetting factors to

perform updating, no suitable VLSI architecture (such as that based on systolic

array), has been proposed to perform fixed-window RLS filtering.

Due to the inherent similarity between updating and downdating, they can

use the same hardware and alternatively pipelined to achieve parallelism in this

dual-state systolic triarray. A flip-flop systolic behavior of this array is observed

both in temporal and spatial domains. We also proposed Cordic cells to mimic
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broadcasting along the rows in the triarray and thus eliminated the propaga-

tion of word-level rotational parameters along the rows by using minirotational

sign bit streams. The hardware complexity of the Cordic cells is quite simple

and the involved computations comprise of simple arithmetics. Square root and

division operations are not required. _Ve have also considered some basic sys-

tolic implementational issues related to the solution of the optimal residuals. To

remedy potential round-off errors associated with downdating, a modified trans-

formation has been considered. The issues of numerical stability and pipelined

computations in the stabilized transformation have also been addressed.

We have investigated efficient algorithms and architectures for performing

fixed-window RLS filtering problems that extended previously known results from

updating to up/down-dating operations. The proposed new dual-state systolic

triarray architectures appear promising for VLSI implementation.
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Figure 5.1: Dual-State Systolic Array for Windowed-RLS Problems.
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Figure 5.2: Boundary and internal cells.
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Fig. 4 (a). Boundary Cordic processor
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Figure 5.4: Transformed boundary and internal cells.
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Chapter 6

Unified Square-Root-Free

Rank-1 Up/Down-dating

Planar (Givens) and hyperbolic rotations are the most commonly used methods

in performing QRD up/downdating. But the generic formula for these rotations

require explicit square-root (sqrt) computations, which are quite undesirable from

the practical VLSI circuit design point of view. Since the sqrt operation takes

up much area and its computational time is long (due to many iterations), the

associated area/time efficiency is poor.

By setting the block size k equal to 1, we can reduce all the vector operations

down to scalar operations. It can be easily seen that all currently available scalar-

type algorithms are merely special cases of the block-type algorithms proposed

in the previous chapters. When k = 1, all the 3 major QRD methods, namely,

HT, MGS, and Givens, can have square-root-free operations and share many

similarities. However, if the block size k is not equal to 1, it's very difficult to

give a square-root-free version for the HT method, while MGS still enjoys such a
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fast version as can be seenin Chapter 3.

After introducing planar (Givens) and hyperbolic rotations, a generalizedap-

proach to eliminate square-rootoperations is derived and then it becomesclear,

that all 2 x 2 orthogonal and pseudo-orthogonalHT, MGS, or Givens rotation

fall into this generalization.

6.1 Planar and Hyperbolic Rotations

A 2 x 2 planar (Givens) rotation matrix is the most fundamental orthogonal

matrix in performing QR decomposition. A planar (Givens) rotation is given by

c s ], and is used to premultiply a two-row matrix
--S C

O_1 (2 2 ... (_p

to introduce a zero element in the (2, 1) location such that it becomes

where

! !

C[ 1 C_2 • . .

o _...

!

C_p

,)

= ,_,lv_,__,+_,,

= n,IJ,_f + ,_,,

, q
!

aj = caj + sl3j ,

_ = -sc_s+_aj,

j=2,---,p.

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)
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Similarly, a hyperbolic rotation matrix is given by

responding parameters satisfy:

, and the cor-

= ,_,/_/_ - z_, (6.6)

,i = ,Ol/¢a_ - _, (6.7)

,_i = _/,_,_-z,_, (6.s)

_ = _J - _s, (6.9)
j--2,...,p.

_j. = --_%. + _Bj, (6.10)

6.2 Prototypes of Generalized SQl=tT-Free A1-

gorithms

In VLSI circuit design, square-root operation is expensive, because it takes up

much area or is slow (due to many iterations). Therefore, it is advantageous to

avoid square-root operations or minimize the required number of such operations.

We will focus on how to meet this goal for the 2 x 2 planar and hyperbolic

rotations.

By taking out a scaling factor from each row, the two rows under consideration

before and after the orthogonal transformations are given by

and

(6.11)

(6.12)
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' {(ai,bl), j = 2,...,p},Now, our task is to find the expressions for k_, k_,al,

in terms of kl, k2, {(aj, bj), j = 1,..., p}, such that NO square-root operation

is actually needed. The square-root expressions of vfkT, v/'k_2, V/_, and _ in

(6.11) and (6.12) are used for representational purposes only and are not actually

performed.

For simplicity, let us focus on planar rotations only, similar derivations for the

square-root-free hyperbolic rotation can also be obtained by replacing k2 with -k2

? .Ca t Iandk; with -k;. Replacing,_j= v'K_j, Zj = v_bj, _j = _, Zj = v'_;b_,

j = 1 .... , p, in (6.1) - (6.5) leads to

c -" V/_lal / Ckla_ + k2b21, (6.13)

.s = V/_2bl / _/kla 2 + k2b_ , (6.14)

V/-_l atl -" Ckla_ + k2b_ , (6.15)

, kl al k_ bl
V/-_l aj = aj + bj , (6.16)

j=2,...,p.

, -_bl aj + _al by, (6.17)

After simplifications we have

, | kta_ + k2b_

a 1 = _ k"_l ,

, 1

= 4k,", +

b_
v/Kv/k,4+

(6.1s)

[klalaj + k2btbj] ,

j=2,.-.,p.

(6.19)

[-blaj + albj] , (6.20)

t andTo avoid square-roots, we need to determine k[ and k_ such that a_, aj

b_ will not require square-root operations. Let us express k_ and k_ as

_:_ - (6.21)
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k_ = k, k2+ ' (,.22)

where /_ and v will be determined later to be any square-root-free functions

of kl,k2,al, and bl. Indeed, with (6.21) - (6.22), (6.18) - (6.20) can be com-

puted with no square-roots, and we have the following updating formulas without

square-roots:

kI- k14+k b 
_2

kl k2 kl k2
=

I

a 1 : _

, _ # k2blbj ]
aj kla_ + k2b_[klalaj +

klalaj + k2blb j

#k_

b_ = v[-blaj + albj] ,

#

bt k_#

j = 2,...,p ,

(6.23)

(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

Notice that square-root operations disappear in our formulas of (6.23) - (6.27)

needed in the planar and hyperbolic rotations. The use of the rotation param-

eter c in (6.28) (with a square-root operation) will be further considered in the

next section when the optimum residual e is desired. Later work will show that

it is possible to obtain e without any square-root operation where the explicit

computation of the rotation parameter c can be bypassed. To avoid repetitive

computations and take the advantage of previous computed results, (6.24), (6.26),

(6.28) and (6.29) use the newly updated k_ of (6.23). As stated earlier, we are

still free to choose those two parameters g and v. Different choices of/z and v
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will affect the number of multiplications and divisions, as well as the numerical

stability and parallelism of computations.

It can be shown that this newly derived approach generalizes all of the previ-

ously known researches on the square-root-free algorithms via an proper choice of

/z and v. Among them are Gentleman('73)[20], Hammarling('74)[24], Bareiss('S2)

[4], Kalson and Yao('S5)[31], Ling, etc.('S6) [37], Barlow and Ispen('S7) [5], Chen

and Yao('88) [13], GStze and Schwiegelshohn('S9) [23]. Table 6.1 lists various

square-root-free algorithms and the corresponding choices of/_ and u.

6.3 SQRT-Free Triangular Array Updating and

Optimum Residual Acquisition

In this section, we will apply the prototypes of sqrt-free rotations developed

above to QRD-based RLS filtering problems. To be specific, we are interested in

updating from

to

(6.30)

R' u' I (6.31)0 T v

as given earlier in (2.12). It can be shown [41] that the p × p upper triangular

matrix R _ can be obtained through a sequence of p Givens rotations and the

optimum residual e for the newly appended data [ x T : y ] is given by

P

e = -(1"I ci) v, (6.32)
i----1

with cl representing the cosine value of the i-th rotation angles.
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Table 6.1: Choices of # and v for various sqrt-free Givens rotations

al + k2b_

v author(year) comment

1 1 Gentleman('73) al = 1

k_4+k_q -1 .
k2bl bl

k!a_+k_b_ 1 ,,
klal al

Hammarling('74)
klal al

kla_ +k2b_ -1 ,,

klal bl

k,4+k_b_
klal k_ .

1
1 -- Bareiss('82)

al

1

al+klb r

-- Chen/Yao ('_) klal - i
klal al

kl a_ + k2b_
klk2 1 G5tze/Schwiegelshohn('89)

2n(k_a_ + k2b_) "2"_ Barlow/Ispen('87) Scaled

Ling('S6),Kalson/Yao('S5) kla_ = 1
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Factoring out the scaling constants into the pre-multiplying diagonal matrix

leads (6.30) to the form of

7"11 7'12 • • . rlp _21

r22 . •. r2p U2

".. :

rpp "Up

Xl x2 • .. xp y

(6.33)

all a12 • • •

a22 • • •

2 ° *"

alp

a2p

app

bp

al,p+l

a 2,p+ 1

(6.34)

ap,p+l

bp+l

Unlike the previously developed formula, where we are only interested in updating

k_, a_j, to kl, a_j and zeroing out all the hi's, this time we do also need to know

the cosine values explicitly as required in the optimum residual given in (6.32).

After the first rotation, bt will be zeroed-out and we have

, k, a_, -b kqb_ (6.35)

k_l) _ klkq (6.36)
'

!

all = _ul , (6.37)

1

a_j - i_k _ [ klax,a11+ kqb, bj ] , (6.38)
j=2,...,p+l,

b_x) = vl [-blalj + aHbj ] , (6.39)

all k_cl = , (6.40)
#1
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with (/_1,vx) being the parameter pair which are still free to be chosen later• Note

the close analogy of (6.35) - (6.40) to those of (6.23) - (6.28). Similarly, after the

i-th rotation (1 < i < p), we have

k,,q,+ '-'1:
' = (6.41)

k_,)_ k_k__-1)2 .,' (6.42)
I_i Vi k i

/

aii = #i, (6.43)

i 1 1,(i_l)l,(i_l}h(i_l}
aij -- [kiaiiaij + ~q vx ,.j ] , .., (6.44)

j=2,...,p+l,
_(i-1) _ di-1)

b_i) = vi[-oi aij + aiio.i ], (6.45)

aii k_c_ = . (6•46)

After p rotations are finished, (6.34) becomes

t t t I

all al 2 • , • alp al,p+l

t t a t
a22 " " " a2p 2,p+l

! t

app ap,p+ 1

0 0 ... 0 h(p)
O,p+ 1

(6.47)

which has the form of

now becomes

Rt

0 T

U !

u

in (6•31). The optimum residual e in (6.32)

( _-_ ai.__i_ ` /.t_ h(p )
i=1 #i V '_q "p+l •

(6.48)
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To further simplify the expressionin (6.48), we notice that k_ r) can be com-

puted recursively as follows,

\ _pup / _p-lup-1

__i+1\ p,v; ] kq,

where (6.42) is used in the recursion.

With (6.51) substituted into (6.48), we have

e -- -- up+ 1 "

Because _/_q[bl, b2, ...

(6.51)

(6.52)

, bv, bp+l] = [xl, x2,. •., Xp, y] is the appended new data row,

we are certainly free to choose kq = 1 to reduce the arithmetic complexity and

simplify the expression in (6.52). Therefore, a lemma on obtaining the sqrt-free

optimum residual is given below.

Lemma 3 (Sqrt-free optimum residual)

The optimum residual e can be computed with no square-root operations as fol-

IOWS:

e = -- Up+l •

McWhirter[41] successfully employed Gentleman's proposition[20] in comput-

ing the residual e without sqrt operations. By choosing

#i "- ui = aii --'-- 1, 1 < i < p, (6.54)
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the optimum residual can be reduced to

( _=1 kl ) h(v) (Gentleman/McWhirter). (6.55)e _- _ _ _p+l

This result was first observed by McWhirter.

Another example can be taken from Hammarling's suggestion[24] as follows,

kia2ii + k_i-1)b! i-I)2

t_ = k_aii ' (6.56)
i=l,...,p.

vi = 1/ a, , (6.57)

then it follows that k_ = kiaii/#_ and the optimum residual is given by

e --" -- 2 Vp+ 1
#i b'i aii

u Up+ I

( ali b(v) (Hammarling). (6.60)= -- _-'7" p+l
aii ]

6.4 Conclusions

Planar (Givens) and hyperbolic rotations are the most commonly used methods

in performing QRD up/downdating. Most of these rotation-based methods re-

quire explicit square-root computations, which are undesirable from the practical

VLSI circuit design point of view. Since the square-root operation takes up much

area and its computational time is slow (due to many iterations), the associated

area/time efficiency is poor. This is the first effort to establish the basic un-

derstanding toward all known square-root-free QRD algorithms, from which the

basic criterion is seen to be simple. This unified approach also provides a fun-

damental framework for the square-root-free RLS algorithms which are essential

for practical VLSI implementations.
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Chapter 7

Truncated Least-Squares

Problems and Applications

In resolving closely spaced frequencies from limited amount of data samples,

Tufts and Kumaresan (1982) proposed a SVD-based method to solve the forward-

backward linear prediction(FBLP) least-squares problem. By imposing an exces-

sive order in the FBLP model and then truncating small singular values to zero,

this truncated SVD (TSVD) method yields a very low SNR threshold and greatly

suppresses spurious frequencies. However, the massive computation required by

SVD makes it unsuitable for real time super-resolution applications. We propose

to use truncated QR methods which are amenable to VLSI implementations, such

as systolic arrays, with slightly degraded performances as compared to the TSVD

method. Three truncated QR methods for sinusoidal frequency estimation will

be considered: (1) truncated QR without column pivoting (TQR); (2) truncated

QR with re-ordered columns (TQRR); and (3) truncated QR with column piv-

oting (TQRP). It is demonstrated that the benefit of the TSVD method for high
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frequency resolution is achievable under the truncated QR methods with much

lower computational cost. Other attractive features of the proposed methods in-

clude the ease of updating, which is difficult for the SVD method, and numerical

stability. Thus, the TQR methods offer efficient ways for identifying sinusoids

closedly clustered in frequencies under stationary and non-stationary conditions.

Some results based on the truncated normal equation approach as well as on

sufficient conditions for perfect truncations based on truncated QR and SVD

methods are considered. Based on the FBLP model, computer simulations and

comparisons are provided for different truncation methods under various SNR's.

Comparisons of asymptotic performance with large data samples are also given.

7.1 Introduction

In recent years, there is much interest in seeking efficient and effective algorithms

for resolving closely spaced sinusoids in the frequency domain as well as in the

spatial domain [52, 59, 10, 32, 49, 51, 29, 50, 60]. Generally, a "good" algo-

rithm for spectral estimation should comprise of several factors, such as: high

frequency resolution capability; computational efficiency; updating and down-

dating capability; and implementable parallel processing structure so that fast

real-time applications are possible. Different methods may perform well in some

aspects but suffer in the others. While the SVD-based method is well known for

its robustness in resolving closely clustered sinusoids, it is not attractive from the

other desirable feature points of view. In this paper, we consider several other

promising approaches based on the truncated QR and least-squares techniques.

In the pioneering paper of Tufts and Kumaresan [59], a SVD-based method for
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solving the forward-backward linear prediction(FBLP) least-squares (LS) prob-

lem was used to resolve the frequencies of closely spaced sinusoids from limited

amount of data samples. By imposing an excessive order in the FBLP model and

then truncating small singular values to zero, this truncated SVD method yields

a low SNR threshold and greatly suppresses spurious frequencies. However, the

massive computations required by SVD makes it unsuitable for real time super-

resolution applications. We propose to use truncated QR and LS methods which

are more amenable to VLSI implementations, such as on systolic arrays[19], with

insignificantly degraded performances as compared to the TSVD method. Three

different truncated QR methods will be considered, depending on the ordering of

the columns of the data matrix. The first one is the truncated QR method without

column shuffling (TQR). This method does not change the structure of the data

matrix. A QR decomposition (QRD) of the data matrix is followed by the trun-

cation of the lower right rank-weakly submatrix of the upper-triangular matrix.

The second one is the truncated QR method with reordered columns (TQRR).

The reordering of the columns is determined in an a priori manner [51]. Here

truncation is performed on the QRD of the column-reordered data matrix. The

computational cost of this TQRR method is the same as that of the first method.

except for the column reshuffling. The last one is called truncated QR with col-

umn pivoting (TQRP) [21]. This method entails a series of dynamic swapping of

columns while performing QRD. An additional computational cost is required to

monitor the norms of the remaining columns in the dimension-shrinking subma-

trix such that the first column is replaced by the one with the largest norm in the

remaining submatrix. The processing overhead of successive column swapping

may be nontrivial and prohibitive in implementing a VLSI structure. All these
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three truncated QR methodsonly involvea finite number of computations, while

for the TSVD method, the number of iterations required cannot be specified in

an exact manner. Based upon MATLAB computations, SVD requires about 5

to 6 times the number of flops ascompared to QRD for a dense50 x 50 matrix.

Furthermore, we should note that QRD only requires a small number of flops

for updating when new data are successivelyappended, while updating SVD is

generallymuchmore intractable [11]. A truncated normal equation approachwill

be shownto be equivalent to the TQR method except for the increasedroundoff

errors under finite precisioncomputations.

A FBLP model for estimating sinusoidal frequenciesis formulated first, fol-

lowedby an introduction of different truncation methods and the minimum-norm

solutions. Finally, comparisonsof these three QR and the LS methods to the

TSVD method aregiven basedon computer simulations.

7.2 FBLP Model

Consider a complex-valued data sequence of length n.

p

Y:_= _ cke _2'_lki + wi =- x; + wi, i = 1,2,..., n, (7.1)
k_-I

where p is the number of sinusoids, complex-valued ck comprises the amplitudes

and phases of each sinusoid, and wi is an additive white Gaussian noise. We

define the signal-to-noise ratio (SNR) as

SNR (dB) = 20 log([[zl[2 /[[wl[2). (7.2)
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It canbeshown [59]that undernoise-freeconditions, the frequencylocationscan

beobtained by finding the roots of

l

S(z) = 1 - _ gkz -k = o,
k_-I

on the unit circle, where the complex-valued coefficients g_s,

satisfy the following system of FBLP equations

(7.3)

k = 1,2,...,£,

• f Xt-- 1 •.. ,T 1

Xt+l Xt • • • X 2

: : ".. :

Xn--I _n--2 " " " Xn-g

x_ _ "'" _+2

: : ".. :

z:-l+1 z:,_l+2 "'" zT_

g2

gl

,Tt+l

X14-2

Xn

x_
(7.4)

with _ >_ p representing the order of the prediction model, and • the complex

conjugate. We will assume that 2(n - _) > g. For simplicity, denote (7.4) as

Ag=b, (7.5)

where the data matrix A and the right-hand-side vector b are constructed from

the data sequence {xi i = 1,..., n} in a FBLP manner• Symbolically, this will

be denoted by [A i b] - {xi [ i = 1,...,n}FBLp. It is noted that the top half of A

represents the forward prediction and is of Toeplitz form while the bottom half

represents the backward prediction and is known as a Hankel form. The rank of

A is p if min{2(n - g), g} _> p. When the noise is present, we use an - on A and

b, i.e., A. = A + E and b = b+ e, to denote the noise-corrupted FBLP model with
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the additive noisegiven by [E i e] - {wl [ i = 1,..., n}r_,p. (7.5) now becomes

the FBLP LS problem of

fi,g _- b, (7.6)

where A usually has full rank due to the perturbation of the noise. One standard

approach [59] is to use the TSVD method on (7.6) to obtain a rank-p approxima-

tion of the FBLP matrix A, denoted by _svo,_(P) followed by solving for a minimum

norm LS solution of g given by

A(P) _ t) (7.7)SVD g -- •

Then the frequencies can be computed by finding the phases of the roots of

(7.3) close to the unit circle or searching for the peaks on the pseudo-spectrum

1/IS(exp(j2rf)l 2, -0.5 _< f < 0.5. Notice that the proper choice of the pre-

diction order g depends on p, the number of sinusoids, which may or may not

be known in advance. Fig. 7.1 depicts a flowchart diagram summarizing the

estimation of harmonics frequencies based on the FBLP model.

7.3 Truncation Methods

In this section, we consider the rank-p approximation of the FBLP matrix A and

subsequently solve for the minimum-norm solution ._0,). For many LS problems,

ill-conditioning can be troublesome, and truncation methods are known to be

useful in stablizing the solutions at the cost of slightly increased residual errors.

The rationale is that the condition number[21] of a matrix, defined as the ratio of

the largest to the smallest singular values, can be used to characterize a worst case

bound on the LS solution when the underlying matrix is subject to some unknown
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perturbation or round-off errors. When the smaller singular valuesarediscarded,

their ill effectson the LS solution are reduced(i.e.,stabilized), or wemay say that

the new condition number of the truncated system is decreased(i.e.,stabilized).

However, this truncated LS solution, although stablized, will be different from

the one that gives the minimum residual; instead, its associated residual with

respect to the original untruncated linear system will be larger. Therefore, the

tradeoff for the truncated linear system lies between an increased stability versus

a decreased residual.

and

Let

(7.s)

AII= Q/_- [Q1 (_2] [/_110 /_22/_12] (7.9)

be the SVD and QR, D of the 2(n - g) × t complex-valued matrix A respectively,

where g denotes the Hermitian of a complex-valued matrix or vector and H is

a column-permutation matrix and will be explained later. _1 = diag(bl, .... &p)

and _2 = diag(&r,+a, .... &t) represent nonincreasing singular values. /_11 E

Cp × P,/_12 E Cp × (t-p), and /_22 E C t-p x (t-p} while /_ is an upper-triangular

matrix.

(7.10)

(7.11)

O=[G G] = [a,,..., ap, ap÷,,..., a,] e c _("-'_x',

_=[_, _] = [_,,..., _., _.,,..., _,] e c '_' ,

(7.12)

and

= [Q_Q_]= [_,..., i_, qp+l,..., qt]e C2(n-0xl

all have orthonormal columns, i.e., fi/t/hj = _iHgj = (_H_j = _ij.
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In the absenceof noise, _2 = /_22 = 0. Here the permutation matrix II =

[_'1, • • •, _rt] is used to represent different methods of performing QRD with column

interchanges. Now we want to preserve as much of the energy as possible (with

respect to the Frobenius norm defined below) in the trapezoidal matrix [/_11/_12]

of (7.9). Equivalently, we want to leave as little as possible the energy residing in

the lower right submatrix/_22, which will be truncated. This approach amounts

to selecting the columns of ,4 in an order such that the column with the largest

linear independency will be selected first. This procedure is repeated for the

shrinking submatrix.

There are at least 3 possible methods for determining the permutation matrix

H while performing QRD, which are:

1. For QRD with no pivoting, H is simply an identity matrix.

2. QRD with pre-ordered columns [51] determines II according to a column

index maximum-difference bisection rule. Here we select the first and the

(h columns, followed by the column [1+el halfway between 1 and e. Then
2 .

we pick the columns that lie in the midway of those ones which are already

l+t.
selected, i.e., [(1 + [--_-_)/21 [( ,+e ., [--_-)/21 -F e)/21 , and so on. This selection

rule does not depend on the real-time data in A. The underlying reason for

this ad hoc fixed-ordering scheme is to provide the selected columns with a

possibly maximum differences or minimum linear dependency among these

columns. This scheme was motivated due to the nature of the matrix

arranged in the form of (7.4) consisting of perturbed sums of harmonic

sinusoids. As an example, suppose there are 5 columns, then the pre-

ordering strategy leads to [1,5, 3, 2, 4]. Thus we have H = [el, es, e_, c2, c4],
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where ei is a dimension e column vector with all zero componentsexcept

for an one at the i *h position.

3. As for QRD with column pivoting [21, p. 233], H is determined during

the QRD process, where zh = e_, and d, E [1,_] is the index such that

ha, has the largest norm. Continuing with this column-pivoting process

on the lower right submatrix yet to be triangularized, we can determine

the permutation matrix H which yields an optimum QRD column ordering

strategy in the sense of preserving most energy in the upper trapezoidal

submatrix. However, this II is data-dependent and the extra cost for this

pivoting may make it less desirable for some applications.

After forcing those rank-weakly quantities to be zero and preserving the most

significant p-rank, we can obtain a rank-p approximate of A. These rank-weakly

quantities are those entries in the factorized matrix that contribute least signif-

icantly to the matrix, or possess the smallest portion of the energy (square of

Frobenius norm) of the associated matrix. For TSVD, E2 is discarded and

A(P) U1 _-_1 VIH (7.13)TSV D -_

Similarly, for TQR, the lower-right submatrix/}22 is discarded and

n = (7.14)

To account for the effectdue to truncation,we definethe fractionaltruncated

F-TtOT"?Tt aS

._-(P) = 1 - I[A(P)IIF/lift.liE, (7.15)

where I1" lie is the Frobenius norm given by

,,A,[I: = i_ _ la_.jl 2 = 1/trace (AHA). (7.16)
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Thus we have

and

While

p) _ -2 e - 2
.T_SVD _f_j=_laj /= ]Ej=l(r j (7.17)

_T.0)R= i- ( IIR,,II_+ llk,_ll_,)1/2 (7.18)

P) P) (7.19)o < _s.D <-_qRP < I

is valid analytically[21], from extensive computations we also observed the rela-

tionships among truncated QR methods to satisfy

n) v)_R,_<___,,R_<_/_R<--1. (7.20)

Therefore from the point of view of preserving the Frobenius norm(square root

of energy) of a matrix, SVD provides the optimum truncation, with TQRP being

next, while TQR and TQRR truncate even more.

7.4 Perturbation of Matrix Decomposition and

Perfect Truncation

In this section, we examine the effects of the noise matrix E on the decompositions

of ,4 = A + E, and associated sufficient conditions for perfect truncations based

on truncated QR and SVD methods. For simplicity, we only consider the QRD

method without pivoting. Since the noise-free data matrix A has rank p, we have

Rll R12

0 0
A = [Q1 i Q2]

= [Q,RI, ! Q1R_:].

(7.21)

(7.22)
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The noise-perturbed data matrix A can be written as

where

= A+E

+ [Q1 : Q2] E_'x E_'2

0 0 E_x E;2

= [Q1 : Q2]IRll+E_XE_, R'2+E_2)E_2

:,QI Q jlQ ,Q 21[0, 021 _'' _,2
0 /_2_ '

(7.23)

(7.24)

(7.25)

(7.26)

(7.27)

0,1 = Q1Q;1 + Q2Q_I,

(22 = Q1Q;2 + Q2Q_2,

(7.28)

(7.29)

and

= QRD (7.30)

with QRD{.} denoting the QR decomposition operator applied to the matrix in

{.}.

After truncation, we have

= [OIRII i 01/_121-

(7.31)

(7.32)
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Let us define a perfect truncation as the case when

A_)R ----A. (7.33)

That is, the original noise-free data matrix A can be fully recovered after trun-

cating the rank-weakly part of the factorization of the noise-corrupted matrix A.

A sufficient condition for (7.33) (i.e., (7.32) to be equal to (7.22)), is for the noise

matrix E to satisfy E{' 1 = E_2 = E_I = 0, where

E = [Q_ i Q_]

 ,oloi[°°]0
[0 } QzE22].

(7.34)

(7.35)

(7.36)

(7.36) reveals that the first p columns of A are noise-free and the rest of the

columns all reside in the orthogonal-complement column space of the data matrix

A.

Similarly for SVD, we have

A= A+E

L o OjLV_ j E_,_E_2

L E¢, E;,j Lv_

(7.37)

(7.39)
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where

0
(7.41)

(7.42)

(7.43)

and

= SVD

u;1 u;_ 0 _ y,-_X v_-_ _;1 E;_
(7.44)

with SVD{.} denoting the SVD operator applied to the matrix in {.}.

We also notice that to achieve perfect truncation for the S\rD method, we

need

fi,(P) = UI_V_ H A (7.45)SV D "= "

A sufficient condition for (7.45) is F;, = £{'= = _', = 0 (i.e., E =/:;2E';2t_ H) and

the largest singular value of E is less than the smallest singular value of E,, or

equivalently, the row and column spaces of E must be orthogonal to those of A,

and there exists a gap between the singular values of A and E such that even the

weakest signal subspace will not be corrupted by any erroneous noise space.

7.5 Minimum-norm Solutions

After truncation, the FBLP LS problem becomes rank-deficient, hence the minimum-

norm LS solution is desired in order to suppress those spurious harmonics in the
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pseudo-spectrum. The following lemma gives the minimum-norm solution for a

rank-deficient LS problem.

Lemma 4 (Minimum-norm solution)

For an underdetermined LS problem,

By = c, (B E C _×t,c E C p,p < e), (7.46)

with rank(B)=p. The minimum-norm solution _¢ is in the row space of B.

Proof.Suppose B has full row rank and _" belongs to the row space of B, i.e.,

_' = Buz, then there ezists a unique solution _, = Bnz since z = (BB_t)-Ic is

unique. Suppose there are other solutions of the form y = _, + y±, where y±

lies in the space perpendicular to the row space of B, i.e., By ± = O. Then it is

obvious that

Ilyll2 = ItYll2 + Ily-Lll2 _ 11_'112.

So

¢¢ = arg min{Ilyll I By = c}.

(7.47)

'E

For simplicity, let H be an identity in the QR.D case. To avoid the cumbersome

normal-equation-like computation of the minimum norm solution, t3H(BBH) -1 c,

with B = [/_u/_2] and c = (_H_, wecan firstly perform _ backward QR decompo-

sition on the conjugate transpose of [/_u/_12] to obtain the same solution as given

in the above lemma without fill-in's(the newly introduced nonzero entities while

performing QRD). Ill-conditioning will not occur because the diagonal elements

are sufficiently large in the trapezoidal truncated matrix. By doing backward
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modified Gram-Schmidt orthogonalization[21]procedure, we can have

BH= IR_ 1=TL'_H (TEdXp;LEC_'x_')' (7.48)

with L being lower triangular. Here the columns of T =- [tl,..., tp] (satisfying

TXT = I) are computed in a backward manner, i.e, from tp to tl, and the

diagonal elements of L are computed from the lower right toward the upper left.

We note that the minimum solution for the truncated QR method is given by

g_Qn = BH(BBH)-Ie

= TL(LHT_TL)-te

= T(L-Uc),

(7.49)

where it is also noted that a backward substitution is required in the computation

of L-Hc.

Therefore the minimum-norm LS solution can be obtained via the following

procedure:

°

1. Do QRD on the augmented matrix [A b] (with possibly column pivoting);

2. Take the transpose of the trapezoidal upper triangular matrix. Do backward

QRD (save the orthogonal matrix T) ;

3. Apply backward substitution on the transpose of lower-triangular matrix

obtained in step (2) and the updated right-hand-side in step (1), followed

by (7.49).

According to this lemma, a minimum-norm solution vector gCp) must lie in

the row space of the rank-reduced matrix ,4(P), namely, the row space of '_'1u or
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[/_u /_,2]. For TSVD it is given by

TSVD "--

or

(7.50)

g_p_ . _'$.
rsvp = _ _--vj. (7.51)

j=t O"j

_(p)
To obtain YTOR, we can perform QRD on the right of the trapezoidal upper-

triangular matrix in (7.14) to zero out/_12 and also obtain the orthonormal row

space, :_H, of [/_11/_12]. That is

,4.(P)r,_ r[ = Q,[_,, _,_] = Q,Z"f" (7.52)

where T = [iz,...,_p] E C_×" has orthonormal columns and L" G CPx" is an

upper-triangular matrix. This is sometimes called a complete orthogonaI fac-

torization [21, p. 236], and we can consider it as a two-sided direct unitary

transformations on a rank-deficient matrix to compress all the energy of a matrix

into a square upper-triangular matrix. This resembles the SVD method where

two-sided iterative unitary transformations are applied to reduce a matrix into a

diagonal matrix. Then from (7.49) and (7.52) the minimum-norm solution follows

rQR = _

= rI_Z-"Q,'-'i,.

by

(7.53)

(7.54)

It is noted that if no truncation is performed at all and A has full column

rank g, then the LS solution from the FBLP model is either obtained from SVD

as
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or from QRD as

- ...:.-_ + .--:--_
j=l crj ajj=p+l

--" _tTSVD "_ _Oj ,

j=p-_,l a'j
(7.ss)

= H

= YI

(7.56)

Because E_ and /_22 are both nearly zero under a high SNR condition, slight

variations on them will cause significant perturbations in the solution vector

and hence leads to many spurious frequencies in the pseudo-spectrum. Now it

becomes clear why one truncates these rank-weakly quantities to remedy these

ill-conditions from the view point of numerical stability and also prefilters some

stray noise in an attempt to guard against possible contaminations in the pseudo-

spectrum.

For many problems, the conservative approach of over-modeling (i.e., g >> p)

is preferred [59, 49] to taking e > p, since we can later truncate some noises that

reside in the null space which is orthogonal to the signal space. The advantage

of over-modeling is to provide some extra dimensions to trap the stray noises

and then remove them by truncation. This is an effective way of enhancing the

SNR. However, there is always the danger that some signal has been mistakably

truncated in low SNR cases where ambiguous changes in the truncated F-norm
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is possible. On the other hand, spurious frequencies are still very likely to occur

when there is insufficient truncation of the rank of the data matrix.

7.6 Truncated Normal Equation Approach

Up to now, the matrix decompositions are performed with the direct data, hence

the condition number of the problem is not increased. It is interesting to see that

there also exists a truncated normal equation (TNE) solution which computes

the minimum norm solution for the covariance data. We show that essentially

this TNE method is mathematically equivalent to the TQR method except for

increased roundoff errors under finite precision computations.

An untruncated least-squares solution for (7.6) using the normal equation

approach is to solve

_H_g = _¢_. (7.57)

If we rewrite A as [,41 _ A2] = [Al i A1F -{-N], where P e C px(t-p} represents the

projection of A2 onto ,_1 and N E C2("-t)×tt-_} represents the remaining residual.

Therefore. columns of ,_l E C 2(n-_)x_and N E C _(_-_×(t-p)are orthogonal to each

other. Under high SNR cases, N is close to a zero matrix, and in the extreme

case when the noise is absent, N is equal to zero. Then (7.57) can be rewritten

as

or

g _m

(7.5s)

(7.59)
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We can see that as N goes to zero, the bottom (l -p) equations in (7.59) become

redundant, because they are merely equal to _H times the top p equations.

Therefore, a truncated normal equation (TNE) can be defined by discarding the

almost-redundant bottom (e- p) equations in (7.59).

Similarly, a minimum norm solution (from the above Lernma) follows by

g(pl A"A' [_f_,_, + _"?,_"_,]-' .(_,"_,). (7.60)
TNE -"

It remains to show that TQK and TNE methods in (7.53) and (7.60) are math-

ematically equivalent. To this end, we can replace ,_1 by Ql/_ll and A2 by

Q,Rl_-bQ,2R22, hence we have ,'_,41 -/_/_,, and 2_"2, = _,,. After some

manipulations, (7.60) can be written as

g(P) [ /_ ] /_[(/_,,/_ +/_,2/_)/_,,]-'" (Q_b), (7.61)T_= _

-(P} in (7.53) where H is an identity.which is equal to UTQR

We must note that although TQR. and TNE methods are mathematically

equivalent_ the former is much favorable under finite precision computation. The

rationale is that the TQR method always deals with the direct data, while the

TNE method works on the covariance data where the dynamic range of data is

inevitably squared. Therefore the TNE method is more susceptible to roundoff

errors.

7.7 Simulation Results

Finally, we present various computer simulations based on the following model.

Let _c_ = cos(2zcfli) + cos(2_rf2i) + wi, i = 1,2,.-. ,48, with fl = .125,]'2 =

Iii



.138,£ = 36 and (w_} is a white Gaussian random sequence. The frequencies

are determined by the phases (from 0 to _')of complex roots closestto the unit

circle.For TQRR, we pre-permute the columns of the FBLP matrix in the order

of: (I 36 18 9 27 5 ...) as suggested by [51].We willconsider three quantities

on the evaluation of the performances. The firstone isthe frequency bias,which

isdefined as the differenceof the true and estimated frequencies. The standard

deviation of the estimated frequency is our second performance measure. The

lastone is the distance of the third principal root to the unit circle.Here we

representthe principalroot as those roots that are close to the unit circle.Ideally

we should have only 2 principalroots (due to the two sinusoidsifwe only consider

those roots with phases within [0,_r]),fallingexactly on the unit circle,while all

the others are insidethe unit circle.Under moderate SNR conditions,a third

principalroot may be mistaken as a third candidate harmonic, ifitsdistance to

the unit circleisapproximately equal to the first2 principalroots. An even worse

condition may occur when the true harmonic fallsbehind (i.e.,furtheraway from

the unit circle)an spurious harmonic due to the random noise. This is similar

to the case that a noise subspace enters the signalsubspace. Therefore. a good

separation of the 3rd harmonic from the unit circlenot only decreases the chance

of mistaking falseharmonics but also increasesour confidence on estimating the

true number of harmonics.

Two classesof comparisons willbe considered in the following curves. The

firstone is to compare these truncation methods under various SNR from 0 to

50 dB. The second isto observe thc asymptotic performance by fixingthe order

e -- 36, and increasing the number of observed data samples. 100 independent

simulations are used to obtain the statisticalmeans and standard deviations.
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Fig. 7.2 gives the average fractional truncated Frobenius norms of (7.16)

versus SNR when we preserve only the four most significant ranks of the FBLP

matrix for the five different methods. This confirms their relationships in (7.19)

and (7.20) and also shows that the truncated energy decreases monotonically as

SNR increases. Fig. 7.3 and 7.4 show the averages of the frequency biases for

the two harmonic frequencies. We define the average frequency bias as E(]k) --

h, k = 1,2, where E(h) is the ensemble average of ._, which is the estimated

frequency for fk. Fig. 7.5 and 7.6 show the standard deviations of ]l and ]2.

We can see that TQRP competes quite weU with TSVD, while TQRI:L performs

slightly worse than TQRP but better than TQR without pivoting. Fig. 7.7 and

7.8 show the distances to the unit circle of the first 2 dominant roots that are

closest to the unit circle. Fig. 7.9 gives the distance to the unit circle of the third

closest root. Since this third root is a false one, it should be far away from the

unit circle to allow for easy determination of number of harmonics.

If we fix the SNR= 10 dB and the order of the FBLP model to be _ = 36,

as more data are collected, the ill effect due to noise should be asymptotically

smoothed out. Fig. 7.10 shows the combined average frequency bias (defined as

the sum of the absolute values of the biases for fl and f2) verses the number of

data samples. Fig. 7.11 shows the curves of various combined standard deviations

of the estimated frequencies which is defined as the square root of the sum of

squares of the standard deviations of each frequency estimate. Fig. 7.12 depicts

the mean distances to the unit circle of the false harmonics. From Fig. 7.!0 to

7.12, it is clear that under moderate SNR conditions, the performances of TQRP

closely follow that of TSVD.
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7.8 Conclusions

While a myriad of researches have been focused on SVD and eigen-decomposition

analysis of narrowly spaced harmonic frequency estimations [59, 49, 29], very few

have been directed towards the QRD approaches. Owing to the iterative massive

computations and the difficulty encountered in updating the decompositions [11]

when new data are acquired under time-varying conditions, these SVD and eigen-

based approaches are ill suited for real time applications. It is well known [21]

that QRD is numerically as stable as SVD, requires much less computational cost,

easy to update(and/or downdate), and amenable to VLSI implementations. The

slightly degraded performance for these truncated QR methods is greatly com-

pensated by all the benefits mentioned above. As well known, the performance

of the LS method is usually much worse than those of the QR and SVD methods.

Table 1 summarizes the comparisons among different truncation methods. We

conclude that TQR is the simplest and can be performed easily in a real time

updating, but may suffer significant degradation. TQRP provides almost the

same performance as SVD, but is not easy to implement in real time processing

in that the difficult column reshuffling is required while performing QRD with

pivoting. TQRR provides a good compromise between the above two and cart

also be implemented for systolic array processing. The LS method is simple to

implement and update but has a poor frequency estimation capability.
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Obs. data: _ FBLP
[A,b[_ I ii(P),l,

est.: _(p)

Norr_

}

Figure 7.1: Block diagram for sinusoidal frequency estimation based on the FBLP
model.

Table 7.1: Comparisons of truncated least-squares methods.

ii
TSVD

TQRP

TQRR

TQR

LS

Freq. est. Comput. cost updating

excellent

very good

good
fair

poor

very high

medium

fair

fair

low

VLSI

complex

medium

fair

fair

low

difficult

medium

easy

easy

easy
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Figure 7.4: Mean frequency estimates for f2 = .135 using a 24 x 36 FBLP matrix.
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Chapter 8

Conclusions

QRD-based methods for RLS estimations are well known to be useful and effective

in adaptive signal processing. A time-recursive formulation of RLS filtering using

block QRD is given for efficient up/down-dating operations. To monitoring the

whole residual vector a recursive formula is derived. Based on this formula, a

back substitution for obtaining the optimum weight vector can be bypassed.

Existing methods of performing RLS estimation either employ exponentially

weighted or fixed-window schemes under non-stationary conditions. Both are less

capable in rejecting the ill effects due to temporary noise spikes. A residual-based

selective window for robust RLS estimation is proposed. Computer simulations

show that its abilities in tracking and reducing the bias of parameter estimation

due to spurious noise spikes are superior to those of the existing methods. This

new method only requires one back substitution to estimate the weight vector,

while a conventional method requires two such operations.

Various up/downdating algorithms and systolic architectures are proposed
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for block-type RLS estimations, which include Gram-Schmidt pseudoorthogo-

nalization methods, and hyperbolic Householdertransformations. Conventional

Gram-Schmidt methods (modified or not) are reformulated such that systolic

processingis possibleand the computational flops are also greatly reduced.

When the block-sizeis reducedto be one,all vector processingbecomesscalar

processing.A duM-state systolic structure using planar (Givens) and hyperbolic

rotations is proposed to perform joint up/down-dating operations. To further

reducethe complexity and increasethe throughput rate, square-root-freeCordic

cells areproposedto mimic the broadcastingalong the rows in the systolic triar-

ray.

Most of the rotation-based methods require explicit square-root computa-

tions, which areundesirablefrom the practical VLSI circuit designpoint of view.

A unified square-root-freerank-1 up/downdating approach is proposed. This is

the first effort to establish the basic understanding toward more than ten known

square-root-freeQRD algorithms, from which the basic criterion is seen to be

simple. This unified approach also provides a fundamental framework for the

square-root-free RLS algorithms which are essential for practical VLSI imple-

mentations.

Three truncated QR methods areproposedto estimateclosedspacedfrequen-

cies from limited amount of data samples.They include truncated QR methods

without columrt pivoting, with column pivoting, and with re-ordered columns.

Detailed comparisonsof these methods to truncated SVD method have been

given.

Table 8.1 summariesthe author's contributions and previousauthors' works.

Matlab programs have been written for all of the algorithms addressedin this
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Table 8.1: List of previously known and new results

Item Previous known results New Results ]_
ii

Res. monit. Rader('86):two passes one pass

Syst. RLS Flit. Gentleman/Kung('81): Block-type,

w/Forget. Fac. Scalar-valued Givens Householder, MGS

Syst. RLS Res. McWhirter('83): Block-type,

Upd. w/Forg. Fac. Scalar-type Givens Householder, MGS

Block RLS Filt. Rader/Steinhardt('86): Hyperbolic MGS

w/Fixed-Win. Hyper. Householder w/out sqrts

Scalar RLS Filt.

w/Fixed-Win.

Hansen/Lawson('74),

Alexander, etc.('87),

Bojanczryk,etc.('87):

Hyper. Rot.

Dual-State Syst.

Implement.

CORDIC cells

Modified GS Rice('66}: Load Imbal. Distr. Load Bal.

Sqrt-Free Many Generalized Appr.

Tufts/Kurnaresan('82):

Truncated SVD,

Comput. Extensive,

Diff. to Update

Spec. Est. Truncated QR

Less comput.

Easy to Update

thesis. Future work of interest includes : numerical comparisons of various square-

root-free fast Givens algorithms, applications of rank-revealing QR (RRQR)[12]

to FBLP-based spectral estimations.
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